

FR
Moteurs
M7000

Sommaire

INTRODUCTION	A 2 - 5
NORMES, DIRECTIVES, SPÉCIFICITÉS	A 2 - 9
SÉLECTION DU MOTEUR	A 10 - 20
OPTIONS	A 21 - 32
FORMULAIRE DE DEMANDE MOTEUR	A 33
001/11/0	
SCHÉMAS	A 34 - 35
EXPLICATIONS TECHNIQUES.	A 34 - 35 A 36 - 42
EXPLICATIONS TECHNIQUES.	A 36 - 42

Groupe NORD DRIVESYSTEMS

Motoréducteurs

Variateurs de fréquence et démarreurs

- ▶ Siège social et centre de recherche et développement à Bargteheide près de Hambourg.
- ▶ Solutions d'entraînement innovantes pour plus de 100 secteurs industriels.
- ▶ 7 sites de production à la pointe du progrès technologique fabriquent des réducteurs, des moteurs et de l'électronique d'entraînement pour des systèmes d'entraînement complets élaborés de A à Z par nos soins.
- NORD a ses 48 filiales propres dans 36 pays et des distributeurs dans plus de 50 pays. Ceux-ci offrent un approvisionnement sur place, des centres de montage, une assistance technique et un service aprèsvente.
- ▶ Plus de 4 000 collaborateurs à l'échelle mondiale apportent des solutions spécifiques aux clients.

Introduction

Les entraînements électriques dans les applications industrielles consomment jusqu'à 70 % de l'énergie totale nécessaire. Pour de nombreuses entreprises, un important potentiel d'optimisation est offert.

NORD DRIVESYSTEMS fournit une large gamme de moteurs électriques qui surpassent toutes les réglementations et normes en vigueur dans le monde en matière d'efficacité.

Nos moteurs sont utilisés dans de nombreuses applications. Ils sont en effet non seulement puissants et robustes mais ils peuvent être aussi combinés avec tous les réducteurs NORD.

Dans le cas de rapports de réduction élevés du réducteur et de montage direct sur le moteur, des arbres taillés pour une construction compacte sont utilisés.

Que ce soit dans les agitateurs, les installations de transport, dans l'intralogistique ou dans l'industrie agroalimentaire :

les moteurs électriques NORD sont partout où une grande performance est requise. Ils fonctionnent pendant de nombreuses années de façon fiable et à un très haut rendement.

Nos clients économisent ainsi des coûts d'exploitation, tout en préservant l'environnement.

Le catalogue G2122 contient des informations relatives aux réducteurs, moteurs et variateurs de fréquence pour l'utilisation dans le domaine de la protection contre les gaz et les poussières explosibles (ATEX).

Les certificats et déclarations de conformité se trouvent sur notre site Web sous www.NORD.com.

Moteurs à basse tension asynchrones

Les moteurs mentionnés dans ce catalogue sont des moteurs à basse tension asynchrones qui peuvent être utilisés en tant que moteurs seuls ou intégrés aux motoréducteurs.

Le catalogue présente exclusivement des moteurs de fabrication NORD, ayant une puissance comprise entre 0,12 et 55 kW. Des informations relatives aux moteurs d'une puissance > 55 kW ainsi qu'aux moteurs spéciaux, tels que les moteurs immergés ou les moteurs à cage, sont disponibles sur demande.

Des informations sur les moteurs Ex se trouvent dans le catalogue G2122.

NORD	IF1 /	Moteurs	etand	ard
עחטעו		Minimi	อเสมเบ	เสเน

Les moteurs de la classe d'efficacité IE1 restent encore disponibles auprès de NORD. Leur utilisation doit être vérifiée quant à leur conformité aux dispositions nationales. Des conditions ambiantes ou modes de fonctionnement particuliers entraînent un état de fait exceptionnel qui autorise le fonctionnement de ces moteurs.

En principe, les moteurs IE1 pour le fonctionnement S1 sont autorisés pour l'exportation dans les pays imposant IE1 et dans les pays exempts de prescriptions correspondantes !

IEC60034-30 50 Hz	60HZ (États-Unis,)	
IE1	NEMA Standard Efficiency	ymentation de l'efficacité
IE2	identique à NEMA High Efficiency	itation de
IE3	identique à NEMA Premium Efficiency	Augmen
IE4	identique à NEMA Super Premium Efficiency	▼

Classes d'efficacité IE1, IE2, IE3, IE4

La norme CEI 60034-30:2008 spécifie les classes de rendement et constitue ainsi la base pour les différentes exigences nationales en termes de rendement. Parallèlement, les procédés pour la mesure des rendements sont harmonisés par la norme CEI 60034-2-1:2007.

Dans le monde entier, des exigences en matière d'efficacité énergétique des moteurs doivent être respectées.

Le choix du moteur est influencé par le développement des moteurs jusqu'à une technique toujours plus efficace et par les exigences actuelles et futures du pays dans lequel l'entraînement doit être utilisé.

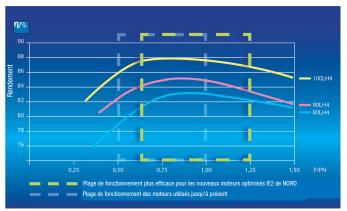
NORD fournit des informations à ce sujet sur :

www.nord.com / Catalogues produits / Nouvelles réglementations pour les moteurs / Réglementations nationales.

Introduction

IE2/IE3 - Différences techniques

Les moteurs de la classe d'efficacité IE3 se différencient nettement des moteurs IE1 disponibles jusqu'à présent.


Par l'utilisation de matériaux supplémentaires de haute qualité et l'application de nouvelles méthodes de production avec des solutions de construction innovantes, de meilleurs rendements sont atteints. Ceux-ci sont absolument conformes aux exigences légales.

Le passage des moteurs disponibles jusqu'à présent aux moteurs IE3 est facilité par les dimensions extérieures en général identiques pour les séries de moteurs NORD. Dans quelques cas seulement, les dimensions de moteur disponibles jusqu'à présent ne suffisaient plus.

Les tableaux à partir de ⇒ □ D2-21 vous fournissent une brève vue d'ensemble.

Lors de l'élaboration du projet, il convient également de tenir compte des modifications de valeurs des moteurs (comme par ex. des valeurs plus élevées pour les couples de démarrage, les couples de décrochage, les vitesses de rotation, les réserves de puissance et le poids).

La manière dont vous pouvez utiliser au mieux les valeurs plus élevées des couples de démarrage et de décrochage en combinaison avec la plage de fonctionnement étendue, vous est expliquée ci-après.

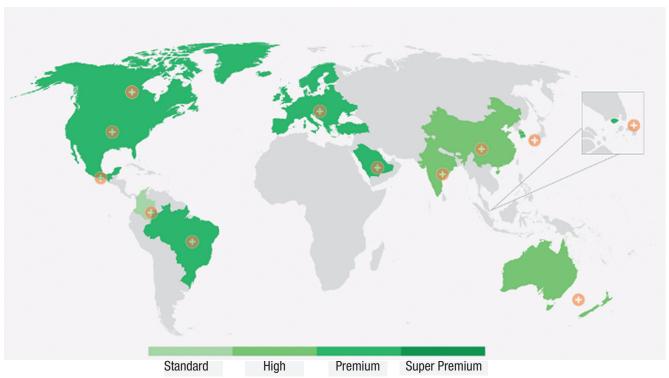
Les courbes indiquent les principaux déroulements des rendements pour les moteurs asynchrones

IE3 - Premium

Les moteurs avec la classe d'efficacité IE3 atteignent une amélioration supplémentaire des rendements. Les réserves thermiques et donc les possibilités d'utilisation continuent ainsi d'augmenter. Même dans le cas d'IE3, NORD respecte les tailles normales avec les puissances standards. Ceci est possible en utilisant des matériaux sélectionnés et une technique de fabrication innovante. Le marquage de la plage de tension élargie a été abandonné. Comme dans le cas des moteurs IE2, le fonctionnement reste toujours possible. Toutefois, les rendements selon IE3 ne sont plus garantis en continu.

De plus, les moteurs IE3 à 4 pôles sont appropriés pour 50Hz et 60Hz, ce qui rend une utilisation possible partout dans le monde. Des informations indiquant quand et où cette classe d'efficacité doit être utilisée se trouvent dans nos brochures, sous : www.nord.com / Catalogues produits / Nouvelles réglementations pour les moteurs / Réglementations nationales.

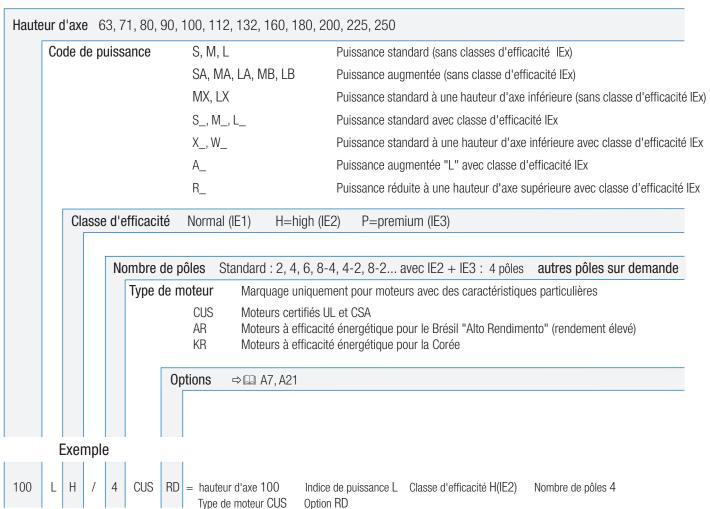
IE4 / IE5 - le niveau suivant


Les moteurs avec la classe d'efficacité IE4 atteignent une amélioration supplémentaire des rendements. NORD a développé des moteurs synchrones à aimants permanents pour le fonctionnement sur variateur dans une plage de puissances jusqu'à 5,5 kW.

D'autres informations relatives aux moteurs IE5 se trouvent dans le catalogue M5000.

Catalogue actuel et élaboré avec soin

Ce catalogue a été réalisé avec le plus grand soin, en se basant sur la législation actuelle. Aucune garantie ne peut être accordée pour les modifications techniques.


Veuillez tenir compte du fait que les normes et directives sont soumises à des changements continus. Même si nous accordons beaucoup d'importance à la précision et à la justesse des informations, ce document ne peut remplacer une étude des directives ou réglementations en matière d'importations en question.

Normes, directives Spécificités

Marquage de puissance du moteur

Exemples

	IE1 + Standard	IE2	IE3
1,5 kW	90 L/4	90 LH/4	90 LP/4
2,2 kW	100 L/4	100 LH/4	100 LP/4
3,0 kW	100 LA/4	100 AH/4	100 AP/4
18,5 kW	180 MX/4	180 MH/4	180 MP/4
22,0 kW	180 LX/4	180 LH/4	180 LP/4
30,0 kW	200 LX/4	200 XH/4	225 RP/4

Options

Abréviation	Signification	Abréviation	Signification
BRE +	Frein / couple de freinage + Option supp.	OL	Sans ventilateur
DBR + e RG *	Double frein + Option supp. Protection anti-corrosion	OL/H	Sans ventilateur ni capot
EE SR *	Protection anti-corrosion Protection anti-poussière et anti-corrosion Relais d'intensité	KB	Trous d'évacuation des condensats
n suppléme ⇔ 1813-14)	Déblocage manuel encliquetable du frein	MS	Connecteur moteur
	Déblocage manuel du frein	EKK	Boîte à bornes monobloc
© Û MIK	Micro-contact	KKV	Boîte à bornes moulée
AS55	Installation à l'extérieur non près de DBR)		(étanchéité résine entre stator et bornier)
BSH	Résistance de préchauffage / frein	FEU	Isolation contre ambiance humide
NRB1 / 2	Frein avec réduction de bruit	TRO	Bobinage tropicalisé
ERD	Borne de terre externe	F	Ventilation forcée
TF	Sondes CTP	RLS	Antidévireur
TW	Contrôleur de température, contact libre de	IG1 (IG11, 12)	Codeur incrémental 1024 points
	potentiel	IG2 (IG21, 22)	Codeur incrémental 2048 points
SH	Résistance de préchauffage	IG4 (IG41, 42)	Codeur incrémental 4096 points
WU	Rotor silumin	IG.K	Codeur incrémental avec boîte à bornes
Z	Masse d'inertie additionnelle, ventilateur fonte	MG IG	Codeur incrémental magnétique Codeur incrémental
WE +	Second bout d'arbre	AG	Codeur absolu
HR	Volant		
RD	Tôle parapluie		
RDT	Tôle parapluie pour ambiance textile		
RDD	Double capot ventilateur		
AS66	Installation à l'extérieur		

Positions de montage

Positions conformément à DIN EN 60034-7

Pour les positions suivantes, les mesures sont identiques :

IM B3 \Rightarrow IM B6, IM B7, IM B8, IM V5, IM V6

IM B5 ⇒ IM V1, IM V3 IM B14 ⇒ IM V18, IM V19

Les moteurs peuvent être commandés dans la position de montage de base et ils fonctionnent alors avec l'installation ci-dessus (position de montage universelle). Dans le cas du modèle avec des trous d'évacuation des condensats (KB), la position de montage doit être impérativement indiquée. Pour la position de montage IM V5, IM V1, IM V18, nous recommandons une exécution avec tôle parapluie (RD).

Pour les motoréducteurs, il convient de respecter la position de montage plaquée du réducteur.

Désignation de mesure selon DIN EN 50347

 \Rightarrow D2-21 Ajustements : D, DA \leq 30 j 6 > 30 k6 N \leq 250 j 6 > 250 h6 H -0.5

Rainures de clavette + clavettes selon DIN 6885/1 Trous taraudés DB + DC selon DIN 332/2

Assignation de la puissance, des bouts d'arbre et des brides ; parallélisme arbre / surface du pied ; concentricité de l'arbre ; voile latéral de la bride / arbre selon DIN EN 50347

Normes, directives **Spécificités**

Moteurs NORD

- sont construits conformément à la norme CEI 60034, parties 1, 2, 5... 9, 11, 12, 14, 30 et portent le marquage CE,
- sont des moteurs à rotor en court-circuit fermés et auto-ventilés en version triphasée ou monophasée,
- peuvent être livrés en outre selon les normes, les recommandations et la classification suivantes :

NEMA

Classification selon le rendement Corée

Moteurs à efficacité d'énergie de NORD

IE1, IE2, IE3 CC 092A AR KR

Classes de rendement selon CEI 60034-30 EISAct Classification selon le rendement (États-Unis) - ee Classification selon le rendement Brésil

China Compulsory Certification n°: 200 701 040 125 842 9

EAC Certificat pour l'importation des moteurs dans l'Union douanière Russie-Biélorussie-Kazakhstan

Marquage CE des produits conformes aux directives européennes

Prescription de National **Electrical Manufacturers** Association

Certification CSA moteurs à économie d'énergie (High efficiency) Dossier n°: 1305200 Master Contract: 189340

Certification CSA et CUS Moteurs 63 S - 180 LX Dossier n°: 1293961 (LR112560)

Master Contract: 189340

Moteurs répertoriés à I'UL 63 S - 180 LX Dossier n° : 191510

Des instructions relatives aux moteurs protégés contre les risques d'explosion (ATEX 2014/34/UE) sont disponibles :

- dans les catalogues NORD spéciaux : G2122
- - sur Internet: http://www2.nord.com/cms/de/documentation/dop_documentation.jsp

Livrée

Revêt	tement / Domaine d'application	Classe**	Structure	Épaisseur de couche*	
		C2	A D	50 - 90 µm	
Installa protég (par ex	O Severe Duty 2 O Severe Duty 2+ ation intérieure et installation extérieure dée c. dans des halls ouverts, non chauffés) demment F3.0	C2	A T P D	110 - 150 μm	
Pour uurbain	O Severe Duty 3 O Severe Duty 3+ Une installation extérieure, atmosphère de et industrielle faiblement contaminée demment F3.1	C3	(2x) T P D	160 - 200 μm	
Expos	O Severe Chem Duty 3 lition modérée aux produits chimiques demment F3.4	C3	T E	100 - 140 μm	
NORE Secter alimer	O Severe Food Duty 3 O Severe Food Duty 3+ urs de l'emballage de produits agro- ntaires demment F3.5	C3	A E D	100 - 140 μm	
Pour uurbain	O Severe Duty 4 O Severe Duty 4+ Une installation extérieure, atmosphère e et industrielle modérément contaminée demment F3.2	C4	(2x) T (2x) P D	220 - 260 μm	
Pour uurbain	O Severe Duty 5 O Severe Duty 5+ Une installation extérieure, atmosphère e et industrielle fortement contaminée demment F3.3	C5	(2x) T (2x) E D	200 - 240 μm	
	Couche de finition transparente en option	Т	Peinture de finition polyuréthane 2 con	nposants	
Α	(+ variantes) Épaisseur du revêtement + 25 µm	E	Primaire phosphate de zinc 2 composa		
	Compensation des plans de joints et des	Р	Primaire polyuréthane 2 composants		
Z	fissures avec des produits d'étanchéité à base de polyuréthane possible avec NSD2, NSD3 et NSD4 Compris dans NSD5	D	Apprêt primaire 1 composant (uniquement pour carters en fonte grise)		

^{**}Comparable à la classification des conditions ambiantes selon DIN EN ISO 12944-2

^{*}Protocole de l'épaisseur de couche suivant ISO 19840 disponible sur demande.

Sélection du moteur

Sélection d'un moteur approprié

Lors du choix d'un moteur, de nombreux facteurs doivent être pris en compte. Il s'agit entre autres, de la puissance, de la vitesse, de la plage de variation des vitesses, du couple, de la taille, des options moteur nécessaires et des conditions ambiantes disponibles. Les informations ci-après aident à choisir le moteur.

Désignation des moteurs

Les moteurs sont désignés en fonction de leur hauteur d'axe et de leur puissance nominale. La hauteur d'axe correspond à la mesure entre l'axe de l'arbre moteur et le plan de pose des pattes du moteur. Les moteurs sont plaqués avec une puissance nominale conformément à la norme DIN EN 50347. Selon la norme, les puissances des moteurs croissent par paliers normalisés, par ex. dans le cas de moteurs à 4 pôles, les puissances normalisées sont 0,12kW-0,18kW-0,25kW etc.

La puissance que le moteur peut réellement fournir en respectant sa classe thermique est généralement supérieure à sa puissance nominale, et souvent inférieure à la puissance réelle absorbée.

Détermination de la vitesse du moteur

Selon le type de construction, les moteurs à 2,4,6 et 8 pôles présentent des différences qui sont décrites dans ce catalogue. Les vitesses de fonctionnement à vide de ces moteurs sont arrondies et représentées dans le tableau suivant.

Nombre de pôles	2	4	6	8
Vitesse de fonctionnement à vide [min ⁻¹] (arrondi) 50Hz	3000	1500	1000	750

Le motoréducteur le plus fréquemment utilisé est à 4 pôles. En raison de sa généralisation, ce moteur est livré dans un délai très court et bénéficie d'un très bon rapport entre sa puissance, son poids et son prix.

Dans le cas des motoréducteurs, la vitesse de sortie du réducteur est déterminée par la vitesse du moteur et le rapport de réduction.

Le rapport suivant s'applique :

La vitesse des moteurs varie légèrement sous l'influence de la charge. Plus la charge est élevée (le couple à fournir), plus la vitesse est faible. Plus le moteur est petit, plus cet effet est important. Les valeurs nominales décrites dans le catalogue ainsi que sur la plaque signalétique sont toujours basées sur la vitesse asynchrone pour la puissance nominale.

De plus, cette partie décrit pour les moteurs IE3 des points de fonctionnement étendus ⇒ ☐ A14, où des puissances plus élevées peuvent être exigées des moteurs. La vitesse dans ce point de fonctionnement diffère de la vitesse nominale. En outre, des moteurs à commutation de polarité présentant 2 vitesses nominales sont décrits.

Sélection de la puissance du moteur

Pour le choix du moteur, la puissance ou le couple nécessaire pour la machine d'entraînement représente une certaine importance.

Dans ce catalogue, la puissance est indiquée en kilowatts [kW] et le couple en newton-mètres [Nm]. La complexité du calcul de la puissance requise ou du couple requis dépend de la nature de l'entraînement.

Les exécutions et caractéristiques techniques suivantes facilitent la conception de l'entraînement. La puissance plaquée sur la plaque signalétique du moteur dépend du mode de fonctionnement du moteur.

Modes de Définition des principaux types de fonctionnement fonctionnement Fonctionnement continu à charge constante Fonctionnement temporaire S2 à charge constante L'équilibre thermique n'est pas atteint. La remise en marche n'a lieu que lorsque le moteur a refroidi à 2K maximum au-dessus de la température de l'air de refroidissement. Exemple: S2-10 min. Valeurs recommandées: 10, 30 min Fonctionnement intermittent composé des mêmes cycles avec des phases à charge constante suivies de **S3** pauses. La fréquence et la difficulté des démarrages ne doivent pas avoir d'influence tangible sur l'échauffement. Sauf accord contraire, la durée de cycle prévue est de 10 min. La durée de marche relative indique la durée de fonctionnement proportionnellement à la durée du cycle. Exemple: S3-40% ED: 4 min. de charge - 6 min. de pause Valeurs recommandées : 40 % – Valeurs différentes sur demande! avec grande fréquence de manœuvre voir ⇒ 🕮 A25 "Ventilation forcée (F)" **S4** Fonctionnement tact Fonctionnement continu avec charge intermittente, composé des mêmes cycles avec des phases à **S6** charge constante suivies d'une marche à vide. Durée de cycle et durée de fonctionnement relative comme avec S3. Exemple: S6 - 40% ED Valeurs recommandées: 40 % – Valeurs différentes sur demande! Fonctionnement ininterrompu avec modification de la vitesse et du couple non cyclique. Il s'agit d'un fonction-**S9** nement où la charge et la vitesse sont en général modifiées de manière non cyclique dans l'intervalle de fonctionnement autorisé. Avec ce fonctionnement, des surcharges pouvant aller bien au-delà de la pleine charge apparaissent souvent. Exemple: S9 - Indication de la puissance moyenne!

Fonctionnement continu:

les valeurs listées des moteurs NORD dans le catalogue sont valables pour le fonctionnement continu (S1). En pratique, les moteurs fonctionnent souvent uniquement de manière temporaire ou avec de fréquentes interruptions.

Augmentation de la puissance en fonctionnement temporaire ou intermittent : en mode temporaire (S2) et intermittent (S3), les moteurs électriques peuvent délivrer une puissance supérieure à celle du fonctionnement continu (S1). Le tableau suivant indique les facteurs d'augmentation autorisée de la puissance par rapport à la puissance assignée (P_N) en fonctionnement continu. En principe, la puissance ne peut toutefois être accrue que dans la mesure où le couple de décrochage relatif (M_K/M_N) divisé par le facteur d'augmentation de la puissance donne une valeur $\geq 1,6$. Dans certains cas, des facteurs plus élevés que ceux indiqués dans le tableau peuvent être obtenus. Ceux-ci sont communiqués sur demande.

S2	Puissance autorisée	S3	Puissance autorisée	S6	Puissance autorisée
10min	1,40 x P _N	25%	1,33 x P _N	25%	1,45 x P _N
30min	1,15 x P _N	40%	1,18 x P _N	40%	1,35 x P _N
		60%	1,08 x P _N	60%	1,15 x P _N

En cas de fréquences de démarrage élevées et de démarrages difficiles, la conception du moteur et la classification du type de fonctionnement doivent être effectuées par NORD.

Pour ce faire, les données suivantes doivent être fournies :

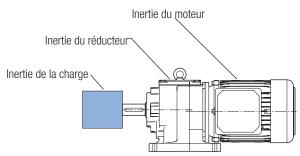
- Durée de fonctionnement relative
- Moment d'inertie de la masse externe
- Fréquence de démarrage
- Déroulement du couple de charge en fonction de la vitesse
- Type de freinage

Remarques

Sélection du moteur

Couple total

Le couple total reguis pour l'entraînement d'une machine est la combinaison du


- couple statique et du
- couple dynamique

Couple statique

Le couple statique est nécessaire pour faire fonctionner une machine à charge et vitesse constantes. Le couple statique est calculé en fonction de la machine d'entraînement, en tenant compte du frottement, des rendements, des capacités de charge, etc.

Couple dynamique

Pour l'accélération de masses inertes, un couple est également nécessaire. La masse inerte se compose à cet effet de la masse de la charge à accélérer et de la masse nette du moteur en rotation (rotor).

Pour pouvoir calculer le comportement de démarrage et de freinage d'un entraînement, tous les moments d'inertie de la masse à accélérer sont rapportés à l'arbre moteur et ajoutés.

$$J_x = \frac{J_L}{i_{total}^2}$$

Moment d'inertie de la masse externe réduit à l'arbre moteur [kgm²] réduit à l'arbre moteur

J, Moment d'inertie de la masse de la charge [kgm²]

i_{total} Rapport de réduction

Si un réducteur est appliqué entre la charge et le côté du moteur, le moment d'inertie de la masse de la charge est diminué du carré du rapport de réduction.

Le moment d'inertie de la masse du réducteur peut être généralement négligé car il est faible par rapport au moment d'inertie de la masse du moteur.

Le couple moteur est calculé avec la formule suivante :

$$M_a = \frac{\pi}{30} \cdot J \cdot \frac{\Delta n}{t_a}$$

Le couple d'accélération M_a d'un moteur dépend du moment d'inertie de la masse total réduit à l'arbre moteur J, de la modification de la vitesse de rotation souhaitée Δn et du temps d'accélération souhaité t

📤 En fonctionnement réseau, le temps d'accélération ne doit pas être supérieur à 4 secondes afin de ne pas surchauffer le moteur!

Le couple de démarrage $M_{\scriptscriptstyle \Delta}$ en cas de fonctionnement réseau est décrit dans le catalogue en tant que rapport au couple nominal M,, par ex. $M_{\Delta} / M_{N} = 2.3$.

En raison du déroulement du couple de l'arrêt à la vitesse nominale, env. 90 % du couple de démarrage peuvent être utilisés pendant le temps d'accélération (voir ⇒ 🕮 A13 Figure de la caractéristique de couple).

Le rapport de $M_{_{\rm A}}$ / $M_{_{\rm N}}$ est de 2,0 dans le cas du fonctionnement avec variateur de fréquence de NORD pendant une durée de 3 secondes et de 1,5 pour une durée de 60 secondes, ce qui est par conséquent plus faible qu'en cas de démarrage sur réseau.

Puissance, couple, vitesse

Le rapport de la puissance, du couple et de la vitesse est décrit par la formule suivante qui permet d'indiquer alternativement pour les motoréducteurs la vitesse de sortie et le couple de sortie du réducteur ou pour les moteurs, la vitesse du moteur et le couple moteur. La puissance du moteur plaquée sur la plaque signalétique du moteur et indiquée dans le catalogue est la puissance émise mécaniquement. La puissance électrique absorbée par le moteur est selon le rendement du moteur, nettement plus importante que la puissance émise.

$$P_{1} = \frac{M_{2} \cdot n_{2}}{\eta \cdot 9550}$$

$$P_{1} = \frac{M_{2} \cdot n_{2}}{\eta \cdot 9550}$$

$$P_{2} = \frac{M_{2} \cdot n_{2}}{\eta \cdot 9550}$$

$$P_{3} = \frac{M_{2} \cdot n_{2}}{\eta \cdot 9550}$$

$$P_{4} = \frac{M_{2} \cdot n_{2}}{\eta \cdot 9550}$$

$$P_{5} = \frac{M_{2} \cdot n_{2}}{\eta \cdot 9550}$$

$$P_{6} = \frac{M_{2} \cdot n_{2}}{\eta \cdot 9550}$$

$$P_{7} = \frac{M_{2} \cdot n_{2}}{\eta \cdot 9550}$$

$$P_{1} = \frac{M_{2} \cdot n_{2}}{\eta \cdot 9550}$$

$$P_{2} = \frac{M_{2} \cdot n_{2}}{\eta \cdot 9550}$$

$$P_{3} = \frac{M_{2} \cdot n_{2}}{\eta \cdot 9550}$$

$$P_{4} = \frac{M_{2} \cdot n_{2}}{\eta \cdot 9550}$$

$$P_{5} = \frac{M_{2} \cdot n_{2}}{\eta \cdot 9550}$$

$$P_{7} = \frac{M_{2} \cdot n_{2}}{\eta \cdot 9550}$$

$$P_{8} = \frac{M_{2} \cdot n_{2}}{\eta \cdot 9550}$$

$$P_{1} = \frac{M_{2} \cdot n_{2}}{\eta \cdot 9550}$$

$$P_{2} = \frac{M_{2} \cdot n_{2}}{\eta \cdot 9550}$$

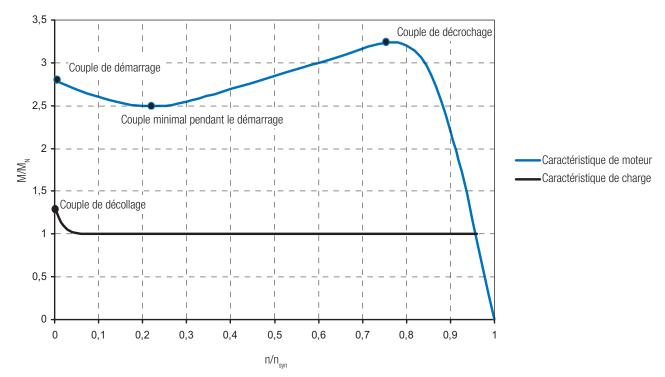
$$P_{3} = \frac{M_{2} \cdot n_{2}}{\eta \cdot 9550}$$

$$P_{5} = \frac{M_{2} \cdot n_{2}}{\eta \cdot 9550}$$

$$P_{5} = \frac{M_{2} \cdot n_{2}}{\eta \cdot 9550}$$

$$P_{7} = \frac{M_{2} \cdot n_{2}}{\eta \cdot 9550}$$

$$P_{8} = \frac{M_{2} \cdot n_{2}}{\eta \cdot 9550}$$


$$P_{7} = \frac{M_{2} \cdot n_{2}}{\eta \cdot 9550}$$

$$P_{8} = \frac{M_{2} \cdot n_{2}}{\eta \cdot 9550}$$

Par exemple, la figure montre le déroulement du couple d'un moteur asynchrone de 90kW en cas de fonctionnement réseau. La caractéristique de charge peut varier selon l'application. Le point d'intersection entre la caractéristique de charge et la caractéristique de moteur représente le point de fonctionnement du moteur. Le point de fonctionnement diffère généralement du point nominal, ce qui explique les écarts entre la vitesse appliquée réellement dans l'application et la vitesse nominale selon le catalogue.

Caractéristique de couple

Caractéristique de charge et caractéristique de moteur (démarrage sur réseau)

Comparaison des couples des moteurs NORD

Après de nombreuses années de pratique, des expériences pour le choix des moteurs sont à présent disponibles, mais ne s'appliquent toutefois qu'en partie aux nouveaux moteurs IE3. En effet, malgré des dimensions essentiellement identiques, les couples des différents types de moteurs varient. Il convient de noter que le couple nominal M_N reste largement inchangé étant donné que la puissance nominale demeure constante et que les vitesses nominales se modifient également à peine.

Les couples de démarrage et de décrochage des moteurs NORD sont élevés. Les moteurs IE3 de NORD présentent même des valeurs largement plus élevées. Ces couples de démarrage élevés peuvent être utilisés pour soutenir des processus de démarrage dans lesquels il est important de passer du frottement d'adhérence au frottement de glissement ou pour faire démarrer des pompes.

Sélection du moteur

Capacité de surcharge des moteurs IE3

Les réserves thermiques importantes des moteurs IE3 peuvent être prises en compte lors de la conception de l'entraînement. Le tableau suivant décrit la charge thermique continue maximale dans la classe thermique F avec une efficacité réduite.

1500 / 1800 1/min 50 / 60 Hz

Plage de fonctionnement étendue

P_{max} ISO F *

							P _{max} ISO F *							
Ţ	ype	P _N [kW]	f [Hz]	P _{max} ISO F [kW]	U [V]	ΔU [%] +/-	n _N [rpm]	M _N [Nm]	I _N [A]	cos φ	η [%]	Service Facteur (NEMA		
		[1444]								0.00		,		
63	SP/4	0,12	50	0,18	400	10	1210	1,42	0,54	0,82	58,7	1,50		
			60	0,18	460	10	1630	1,05	0,43	0,72	68,6	1,50		
63	LP/4	0,18	50	0,25	400	10	1270	1,86	0,73	0,79	63,8	1,39		
			60	0,25	460	10	1655	1,44	0,59	0,70	72,8	1,39		
71	SP/4	0,25	50	0,37	400	10	1305	2,71	0,99	0,85	65,7	1,48		
			60	0,37	460	10	1680	2,10	0,77	0,78	74,8	1,48		
71	LP/4	0,37	50	0,45	400	10	1345	3,19	1,11	0,80	71,1	1,22		
		,	60	0,55	460	10	1640	3,20	1,11	0,82	74,3	1,49		
80	SP/4	0,55	50	0,75	400	10	1350	5,31	1,77	0,81	75,3	1,36		
		-,	60	0,75	460	10	1685	4,25	1,49	0,78	80,1	1,36		
80	LP/4	0,75	50	1,10	400	10	1335	7,90	2,51	0,83	78,0	1,47		
	LI / I	0,70	60	1,10	460	10	1680	6,27	2,08	0,80	82,4	1,47		
90	SP/4	1,10	50	1,50	400	10	1370	10,2	3,18	0,84	80,5	1,36		
50	01 / 4	1,10	60	1,50	460	10	1700	8,30	2,66	0,83	84,8	1,36		
90	LP/4	1,50	50	2,00	400	5	1330	14,4	4,34	0,85	78,0	1,33		
90	LF/4	1,50	60	2,20	460	10	1660	12,7	3,88	0,86	83,0	1,47		
100	LD/4 ++	0.00	50	3,00	400	10	1440	19,9	5,90	0,84	87,2	1,36		
100	LP/4 **	2,20	60	3,00	460	10	1750	16,4	5,02	0,84	89,6	1,36		
400	O AP/4 **	AD/4 **	AD/4 ++	/4 ** 0.00	50	4,00	400	10	1425	26,8	7,82	0,86	86,0	1,33
100		3,00	60	4,00	460	10	1740	22,0	6,71	0,84	88,9	1,33		
			50	5,00	400	10	1420	33,6	9,71	0,86	85,9	1,25		
112	MP/4	4,00	60	5,50	460	10	1725	30,4	9,20	0,86	87,2	1,38		
			50	7,50	400	10	1445	49,6	14,6	0,84	87,8	1,36		
132	SP/4	5,50	60	7,50	460	10	1750	40,9	12,8	0,83	88,8	1,36		
			50	9,20	400	10	1440	61,0	17,8	0,83	89,1	1,23		
132	MP/4	7,50	60	9,20	460	10	1755	50,1	15,4	0,82	91,1	1,23		
			50	11,0	400	10	1455	72,2	19,8	0,89	90,1	1,20		
160	SP/4	9,20	60	11,0	460	10	1765	59,5	17,2	0,87	91,0	1,20		
			50	15,0	400	10	1445	99,1	27,2	0,88	88,9	1,36		
160	MP/4	11,0	60	15,0	460	10	1755	81,6	23,9	0,87	89,6	1,36		
			50	18,5	400	10	1460	121,0	33,0	0,88	90,5	1,23		
160	LP/4	15,0	60	18,5	460	10	1765	100,1	29,7	0,87	90,7	1,23		
			50	22	400	10	1475	142,4	40,1	0,87	92,4	1,19		
180	MP/4	18,5	60	22	460	10	1780	118,0	35,6	0,83	92,4			
			50	28	400	10	1460	183,1	51,1	0,88	89,8	1,19 1,27		
180	LP/4	22,0	60											
				30	460	10	1765	162,3	47,3	0,88	90,5	1,36		
225	RP/4	30,0	50	37	400	10	1480	238,7	68,0	0,85	93,2	1,23		
			60	37	460	10	1775	199,0	58,1	0,85	93,8	1,23		
225	SP/4	37,0	50	45	400	10	1475	291,3	82,2	0,86	92,7	1,22		
			60	45	460	10	1775	242,1	70,1	0,85	94,4	1,22		
225	MP/4	45,0	50	55	400	10	1475	356,1	99,1	0,86	92,9	1,22		
		-10	60	55	460	10	1775	295,9	84,8	0,85	95,1	1,22		
250	WP/4	55,0	50	60	400	5	1475	388,4	105,5	0,87	93,2	1,09		
200	, т	55,0	60	60	460	10	1775	322,8	91,2	0,86	95,4	1,09		

^{*} Complément pour les moteurs ⇒ ☐ C12 ** Série APAB

Fonctionnement avec variateur

Fonctionnement du variateur de fréquence

L'intégration de variateurs de fréquence permet d'étendre largement les possibilités d'utilisation des moteurs triphasés et des motoréducteurs par rapport au fonctionnement simple sans variateur.

Vue d'ensemble des avantages :

- Réglage de la vitesse en continu dans de larges gammes
- Adaptation automatique de la charge de la vitesse par la compensation de glissement avec des variateurs vectoriels
- Rampe d'accélération programmable pour démarrage en douceur, ce qui est bénéfique pour l'entraînement et l'application ; un courant de démarrage élevé est évité
- Temporisation guidée, réglable jusqu'à l'arrêt (le cas échéant, seul le frein d'arrêt est requis)
- Nombreuses fonctions basées sur le logiciel pour la commande et la surveillance de l'entraînement jusqu'au positionnement dynamique avec des variateurs NORD!
- Possibilité d'économiser de l'énergie par l'adaptation et l'optimisation du processus et avec la fonction d'économie d'énergie des variateurs NORD

Les moteurs triphasés NORD (sans commutation de polarité) sont appropriés pour le fonctionnement avec des variateurs de fréquence usuels du marché. Grâce à l'utilisation d'un fil double émaillé et l'isolation de phases, les bobinages sont protégés contre les forts pics de tension, qui apparaissent dans le cas des variateurs modernes avec modulation d'impulsions en largeur. Pour les moteurs qui fonctionnent avec un variateur au-delà de 500V, l'utilisation de filtres du/dt ou de filtres sinus est nécessaire.

En cas de fonctionnement avec variateur, les moteurs peuvent émettre en continu leur puissance nominale intégrale. En général, pour le fonctionnement avec variateur, il n'existe aucune restriction en ce qui concerne les options moteur. Le frein moteur et la ventilation forcée ne doivent pas fonctionner sous l'alimentation moteur.

Le type d'un système de codeur possible (incrémental ou absolu) dépend des exigences de l'application et le type de signal (TTL, HTL, SSI, CANopen) dépend du type de variateur de fréquence utilisé et de son interface de codeur.

En principe, il est recommandé d'équiper chaque entraînement à régulation de vitesse avec des sondes de température et d'évaluer ces dernières par le variateur de fréquence. À cet effet, le moteur est protégé de la surchauffe.

Fonctionnement avec variateur - Caractéristiques et étude du projet

Nous souhaitons poser ici certaines questions essentielles et y répondre ; ces questions portent par exemple sur :

- la fréquence ou la vitesse la plus petite possible,
- I'augmentation de la fréquence au-dessus de 50 Hz,
- l'augmentation de la puissance des moteurs triphasés par la caractéristique de 87 Hz,
- la plage de réglage de vitesse étendue par la caractéristique de 100 Hz,

et ce, afin de contribuer à l'application optimale des entraînements à variateur de fréquence. Le moteur asynchrone triphasé peut essentiellement fonctionner dans la plage de variation de 0 à 2 fois la vitesse nominale. La vitesse maximale est définie par des limites mécaniques.

Fréquence ou vitesse la plus petite possible

Dans le cas de petites vitesses, le refroidissement est obligatoirement fortement réduit par le ventilateur propre au moteur. Par conséquent, la puissance de perte thermique du moteur n'est plus suffisamment évacuée et cela peut entraîner une surchauffe en fonctionnement continu. En cas de fonctionnement avec une charge nominale, cet intervalle pour les vitesses de rotation est < à 1/2 la vitesse nominale (25 Hz).

L'utilisation d'une ventilation forcée permet d'exclure complètement la problématique thermique.

Un fonctionnement continu est ensuite possible avec les vitesses de rotation (2 x 5Hz de fréquence de glissement) les plus petites.

Ou bien, le moteur peut être de plus grande dimension.

L'entraînement fonctionne à cet effet avec une charge réduite. Une puissance de perte plus faible en résulte également avec en supplément une réserve thermique plus élevée en raison de la taille du moteur augmentée.

Le couple possible, la surcharge et les précisions de concentricité dépendent essentiellement de la performance du variateur de fréquence utilisé. Le cas échéant, une petite vitesse souhaitée ou une vitesse de "0" est uniquement possible par une réduction de la vitesse de rotation avec un codeur.

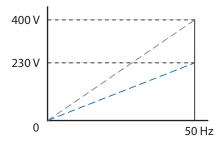
Sélection du moteur

Conception selon la caractéristique de 50 Hz (conception standard)

Plage de variation 1 : 10 (5 - 50 Hz)

Les moteurs asynchrones triphasés sont prévus pour un point de fonctionnement nominal (par ex. 400V/50Hz). Jusqu'à sa fréquence nominale, le moteur est en mesure d'émettre son couple nominal.

La vitesse du moteur, selon la fréquence, peut être calculée pour un moteur à 4 pôles comme suit :


$$n_{Hz} = [(1500 \text{ tr/min} \cdot f_{Hz}) / 50 \text{Hz}] - \text{vitesse de glissement}$$

Le rapport entre la puissance et le couple en fonction de la vitesse pour les moteurs à 4 pôles est le suivant :

$$M = \frac{P \cdot 9550}{n}$$

Une baisse de la vitesse < 50 Hz n'entraîne pas une augmentation du couple comme dans le cas des réducteurs de réglage, mais une baisse de la puissance. Pour un couple constant, l'intensité reste constante et la tension diminue avec la fréquence.

Une augmentation de fréquence supplémentaire dans la plage d'affaiblissement du champ provoque ainsi la réduction de couple.

Au-delà de la fréquence nominale, le couple disponible se réduit étant donné qu'en cas de fréquence plus élevée, la tension n'augmente plus. Le flux magnétique est réduit. Cet intervalle est appelé "plage d'affaiblissement du champ".

Conditions physiques préalables requises pour un couple constant :

$$\begin{array}{cccc} M = constant & \Leftrightarrow & \Phi = constant & \Leftrightarrow & U/f = constant \\ Couple & & Flux \ magn\'etique & & Tension / \ fr\'equence \\ \end{array}$$

La condition U/f = constant, peut être réalisée au maximum par le variateur de fréquence uniquement jusqu'au point de fonctionnement nominal ($U_{\text{nominal}}/f_{\text{nominal}}$ = constant). Une augmentation supplémentaire de la tension au-delà de la tension réseau n'est pas possible techniquement.

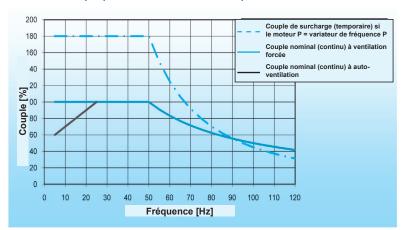
Le couple se réduit avec le rapport

$$^{1}/_{X}$$
 \Rightarrow $^{M_{AB}}/_{M_{NOMINAL}} = ^{f_{Nominal}}/_{f_{AB}}$

déduction faite des autres pertes supplémentaires, en raison de la fréquence augmentée

Exemple:

1,4 fois la fréquence nominale = 70 Hz


$$\mathbf{M}_{_{70Hz}} = \frac{f_{_{NOMINAL}}}{f_{_{AB}}} \cdot \mathbf{M}_{_{NOMINAL}} = \frac{50 \text{ Hz}}{70 \text{ Hz}} \cdot \mathbf{M}_{_{NOMINAL}} = 71\% \cdot \mathbf{M}_{_{NOMINAL}}$$

Dans certaines circonstances, la plage d'affaiblissement du champ commence déjà avant d'atteindre le point spécifique proprement dit.

Parmi les causes possibles, il peut s'agir de pertes de tension par le variateur de fréquence lui-même, par des inductances ou des longueurs de câble.

Dans la plage d'affaiblissement du champ, la capacité de surcharge réduite de l'entraînement doit particulièrement être prise en compte car l'affaiblissement de champ entraîne une forte réduction du couple de décrochage du moteur.

L'effet est expliqué dans la caractéristique de 50 Hz suivante :

La réduction du couple des moteurs autoventilés dans le cas de fréquences < 25 Hz s'applique ici en fonctionnement continu.

Pour le fonctionnement temporaire, les couples de démarrage et de surcharge habituels sont disponibles sur le variateur de fréquence.

Si des applications n'exigent pas de couple constant au-delà de la plage de variation totale, ceci doit être pris en compte.

Les pompes centrifuges et les ventilateurs disposent par exemple d'une caractéristique de couple augmentant de manière quadratique et qui favorise le fonctionnement avec de petites vitesses.

Conception selon la caractéristique de 87Hz (pour des moteurs asynchrones à 4 pôles)

Plage de variation 1:17 (5 - 87 Hz)

L'avantage de cette conception est une augmentation de la puissance du moteur et de la vitesse au-delà des valeurs nominales du moteur en cas de couple constant. Une plage de variation plus importante de 1:17 ou supérieure en résulte ou bien le choix d'un moteur plus petit pour la puissance donnée et une adaptation du rapport de réduction s'imposent.

Une amélioration du rendement est ainsi obtenue.

Les inconvénients sont l'augmentation du bruit (de ventilateur) et éventuellement, un niveau de rapport de réduction requis en supplément.

Dans le cas de la caractéristique de 87 Hz, les mêmes restrictions thermiques dans une plage de vitesses inférieure que pour une conception de 50 Hz s'appliquent ⇒ ♣ A16.

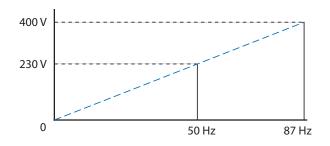
La plage d'affaiblissement du champ commence toutefois d'abord au-delà de la fréquence d'inflexion de 87 Hz.

Ce fonctionnement est possible en respectant les conditions suivantes :

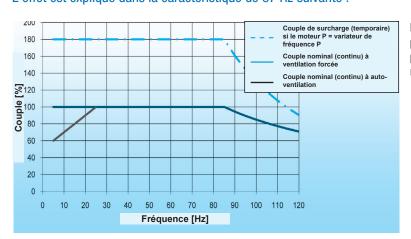
- Le moteur doit être commuté pour la tension de 3~230V, autrement dit, pour les moteurs de 230/400V → couplage en triangle (Les moteurs avec bobinage 400/690V ne sont pas adaptés pour ce mode de fonctionnement et des réseaux avec 230 V par phase)
- ▶ Le variateur de fréquence doit avoir la tension de fonctionnement de 3~400V et le courant de sortie nominal doit au moins correspondre au courant triangulaire du moteur. Résultat :

Puissance du variateur Puissance nominale du moteur >1,73

 En raison des vitesses de moteur max. plus élevées, le ratio de réduction du réducteur doit éventuellement être redéfini.


Remarque

Dans le cas de cette configuration


- moteur de 230 V/50 Hz sur un variateur de fréquence avec 400 V
 - ▶ le point de fonctionnement nominal est à 230V/50Hz et un
 - ▶ point de fonctionnement étendu est à 400V/87Hz.

Du fait de l'augmentation du point de fonctionnement de 50 Hz à 87 Hz en cas de couple constant, la puissance moteur augmente à la même mesure du facteur $\sqrt{3} = 1,73$.

Le fonctionnement du moteur commuté de 230 V avec 400 V est totalement acceptable étant donné que les bobinages moteur sont conçus pour des tensions d'essai $> 2\,000\,V$.

L'effet est expliqué dans la caractéristique de 87 Hz suivante :

Il convient de veiller à ce que le couple nominal du moteur ne soit pas augmenté. Le comportement est notamment modifié dans la plage de 0 à 50 Hz. La plage de variation habituelle correspond au moins à 1:17.

Sélection du moteur

Conception selon la caractéristique de 100Hz (pour des moteurs asynchrones à 4 pôles)

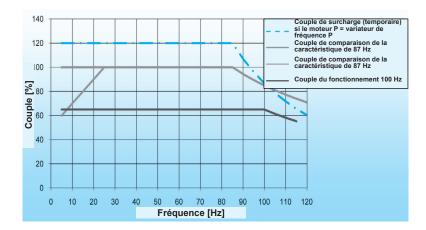
Plage de variation 1 : 20 (5 - 100 Hz)

La plage d'affaiblissement de champ s'étend sur toute la plage jusqu'au point de 100 Hz, d'où une plage de variation très importante. Ce faisant, des vitesses plus petites peuvent également être mieux utilisées car le moteur triphasé fonctionne avec un couple réduit.

Ceci est atteint du fait que le moteur ne fonctionne pas avec sa puissance limite thermique, mais toutefois avec des données moteur exactement adaptées au variateur de fréquence vectoriel.

Ce fonctionnement est possible en respectant les conditions suivantes :

- Le moteur doit être commuté pour la tension de 3~230V, autrement dit, pour les moteurs de 230/400V → couplage en triangle.
- ▶ De nouvelles données moteur de 100 Hz doivent être calculées → Getriebebau NORD
- Le variateur de fréquence doit avoir la tension de fonctionnement de 400 V
- La puissance du variateur de fréquence doit être supérieure d'un niveau à celle du moteur
- En raison des vitesses de moteur max. plus élevées, le ratio de réduction du réducteur doit éventuellement être redéfini.


Remarque

Dans le cas de cette configuration, le point de fonctionnement nominal du moteur standard triphasé est de 400 V/100 Hz. Ceci est possible par un nouveau calcul des données moteur dans notre établissement.

Le couple qui en résulte est disponible sur toute la gamme de réglage (5...100 Hz) et est légèrement en dessous de la valeur standard de la taille de moteur correspondante.

Selon la taille du moteur, la réduction du couple de sortie est comprise entre 30 et 40%, ce qui est toutefois compensé par le ratio de réduction supérieur du réducteur pour la même vitesse de sortie.

L'effet est expliqué dans la caractéristique de 100 Hz suivante :

Affectation variateur - moteur

Le variateur de fréquence est sélectionné en tenant compte des caractéristiques, en fonction de la tension réseau et de l'intensité nominale du moteur. Ceci s'applique : courant de sortie nominal du variateur ≥ courant nominal du moteur.

Les moteurs asynchrones à 4 pôles se sont imposés sur le marché comme standard. Toutefois, des moteurs avec d'autres nombres de pôles peuvent aussi en principe fonctionner sur le variateur. Dans le cas des moteurs à 2 pôles, l'adéquation du moteur pour le réducteur est à vérifier. Les vitesses maximales autorisées pour les moteurs doivent être respectées, ⇒ □ chapitre C.

Parallèlement au variateur à armoire SK500, NORD propose également des variateurs de fréquence décentralisés SK180E et SK200E avec un type de protection élevé pour le montage direct du moteur. En ce qui concerne les options moteur, par ex. la commande de freinage directement effectuée par le variateur, certaines particularités doivent être prises en compte avec les variateurs décentralisés.

De plus amples informations à ce sujet se trouvent dans le catalogue E3000 ainsi que dans les manuels relatifs à la gamme de produits correspondante, ⇒ 🕮 www.nord.com Documentation / Manuels.

Conception avec le point de fonctionnement à 70 Hz

Une autre possibilité permettant d'obtenir une plage de variation plus importante est la conception avec le point de fonctionnement sur 70 Hz. Cette procédure se sert de la caractéristique de 50 Hz, définit toutefois le rapport de réduction de sorte que la vitesse maximale est atteinte seulement à 70 Hz. Dans certains cas rares, un étage de réducteur supplémentaire est nécessaire pour cela. Sur le variateur de fréquence et sur le moteur, rien n'est modifié par rapport à la caractéristique de 50 Hz.

Avantages:

- ▶ la plage de variation est augmentée à 1 : 14 (5 70 Hz)
- b des couples plus élevés supérieurs sur de larges segments de la plage de variation, en particulier 5 50 Hz

À partir d'une fréquence > 70 Hz, le couple est abaissé plus fortement suite à l'affaiblissement de champ qu'il n'est augmenté suite au rapport de réduction plus élevé.

Calcul du couple

Motoréducteur typique, fonctionnement réseau	Motoréducteur typique, sur le variateur de fréquence
	 n₂ = 10 - 100 tr/min M₂ = 100 Nm f = 7 - 70 Hz (environ)
$P = (100 \text{ Nm} / 9550) \cdot 100 \text{ tr/min}$ P = 1,05 kW, choix = 1,1 kW moteur 90S/4	$P = (100 \text{ Nm} / 9550) \cdot 100 \text{ tr/min}$ P = 1,05 kW, choix = 1,1 kW moteur
i = 1500 tr/min / 100 tr/min = 15	i = 2100 tr/min / 100 tr/min = 21
$M_{N(50Hz)} = (1,1 \text{ kW} \cdot 9550) / (1500 \text{ tr/min} / 15)$	$M_{N(50Hz)} = (1,1 \text{ kW} \cdot 9550) / (1500 \text{ tr/min} / 21)$
$M_{N(50Hz)} = 105 \text{ Nm}$	$M_{N(50Hz)} = 147 \text{ Nm} \qquad M_{N(70Hz)} = 105 \text{ Nm}$
$M_A = 2.3 \cdot 105 \text{ Nm} = 240 \text{ Nm}$ $2.3 = M_A/M_N$ dans le cas du moteur 90S/4	${ m M_A}=1.7\cdot147\;{ m Nm}=250\;{ m Nm}$ dans le cas d'une surcharge du variateur supposée de 1,7 fois

Vitesses maximales des moteurs

À partir des vitesses décrites ci-après, des mesures spéciales sont requises (bagues d'étanchéité Viton côté A + B). Toutes les indications s'appliquent toujours au mode de fonctionnement continu S1. À court terme, des vitesses plus élevées peuvent être exigées des moteurs, même sans modification.

Types	Vitesse maximale [tr/min]
63	2500
71	2500
80	2860
90	3400
100	3500
112	3500
132	3300
160	3200
180	3100
225	2800
250	2800

Sélection du moteur

Abréviation	Signification	Unité
ED	Durée de fonctionnement relative	[%]
P_{N}	Puissance nominale	[kW]
n _N	Vitesse nominale	[tr/min]
n _{syn}	Vitesse de rotation synchrone	[tr/min]
l _A	Courant de démarrage	[A]
I _N	Intensité nominale	[A]
I_A/I_N	Courant de démarrage / intensité nominale (rapport du courant de démarrage par rapport à l'intensité nominale)	[-]
cos φ	Facteur de puissance	[-]
η	Rendement	[%]
M_{A}	Couple de démarrage	[Nm]
M_{N}	Couple nominal	[Nm]
M_A / M_N	Couple de démarrage / couple nominal (rapport du couple de démarrage par rapport au couple nominal)	[-]
M_{κ}	Couple de décrochage	[Nm]
M_{K}/M_{N}	Couple de décrochage / couple nominal (rapport du couple de décrochage par rapport au couple nominal)	[-]
M_{B}	Couple de freinage	[Nm]
J	Moment d'inertie de masse	[kgm ²]
J_{x}	Moment d'inertie de la masse externe réduit à l'arbre moteur	[kgm²]
J_{L}	Moment d'inertie de la masse de la charge	[kgm²]
U	Tension	[V]
L _{PA}	Niveau de pression acoustique	[dB(A)]
L_{WA}	Puissance acoustique	[dB(A)]
t _e	Temps d'échauffement à l'état bloqué (moteurs Exe)	[s]
Z _o	Nombre de démarrages à vide	[1h]
$S_{_{\rm F}}$	Service-facteur (uniquement dans le cas de NEMA)	[-]
T_{amb}	Température ambiante	[C]
Code Letter NEMA	Les caractères d'imprimerie Code Letter sont une mesure pour la charge de secteur lors de la mise sous tension directe du moteur. Ils sont définis dans le cadre du standard NEMA et codés par une lettre d'identification de A jusqu'à V (uniquement dans le cas de NEMA).	

Abréviation	Signification	$\Rightarrow \square$	Standard / IE1	IE3	AR	KR	CUS
BRE +	Frein / couple de freinage + Option supp.	B2-19	х	Х	Х	Х	Х
DBR +	Double frein + Option supp.	B15	х	Х	Х	Х	Х
RG *	Protection anti-corrosion	B13	х	Х	Х	Х	Х
SR *	Protection anti-poussière et anti-corrosion	B13	х	Х	Х	Х	Х
IR *	Relais d'intensité	B14	х	х	х	х	
FHL *	Déblocage manuel encliquetable du frein	B12	х	Х	Х	Х	Х
HL 1)	Déblocage manuel du frein	B12	х	Х	Х	х	Х
CL	Pince pour leviers à déblocage manuel	B12	х	Х	Х	Х	Х
MIK	Micro-contact	B12	Х	Х	Х	Х	Х
AS55	Installation à l'extérieur	A42	х	Х	Х	Х	Х
* pas	dans le cas de DBR						
BSH	Résistance de préchauffage / frein	B14	х	Х	Х	Х	Х
NRB1 / 2	Frein avec réduction de bruit	B14	х	Х	Х	Х	
ERD	Borne de terre externe	A22	х	х	Х	х	
TF	Sondes CTP	A22,40	х	Х	Х	Х	Х
TW	Contrôleur de température, contact libre de potentiel	A22,40	х	х	х	х	х
SH	Résistance de préchauffage	A22	Х	Х	Х	Х	Х
WU	Rotor silumin	A22	х				Х
Z	Masse d'inertie additionnelle, ventilateur fonte	A23	Х	x**			Х
WE +	Second bout d'arbre	A23	х	Х	х	Х	Х
HR	Volant	A22	Х	Х	Х	Х	
RD	Tôle parapluie	A22	х	Х	х	х	Х
RDT	Tôle parapluie pour ambiance textile	A23	Х	Х	Х	Х	Х
RDD	Double capot ventilateur	A22	х	х	х	х	Х
AS66	Installation à l'extérieur	A41,42	Х	Х	Х	Х	Х
0L	Sans ventilateur	A24	х				Х
OL/H	Sans ventilateur ni capot	A24	Х				Х
KB	Trous d'évacuation d'évacuation des condensats	A22	х	Х	х	х	Х
MS	Connecteur moteur	A31	Х	Х	Х	Х	Х
EKK	Boîte à bornes monobloc	A23	х	Х	х	х	Х
KKV	Boîte à bornes moulée (étanchéité résine entre stator et bornier)	A23	х	х	х	х	х
FEU	Isolation contre ambiance humide	A22	х	х	Х	х	Х
TRO	Bobinage tropicalisé	A23	х	Х	Х	Х	
F	Ventilation forcée	A25	х	Х	Х	х	Х
RLS	Antidévireur	A24	х	Х	Х	Х	Х
IG1 (IG11, 12)	Codeur incrémental 1024 points	A28	х	Х	Х	х	Х
IG2 (IG21, 22)	Codeur incrémental 2048 points		х	Х	Х	Х	Х
IG4 (IG41, 42)	Codeur incrémental 4096 points		х	Х	х	х	Х
MG	Codeur incrémental magnétique	A26	х	Х	Х	Х	Х
IG	Codeur incrémental	A28	х	Х	х	х	Х
IG.P	Codeur incrémental avec fiche	A29	х	Х	Х	Х	Х
IG.K	Codeur incrémental avec boîte à bornes	A29	х	х	Х	х	
AG	Codeur absolu	A30	Х	Χ	Х	Х	Х

 x^{**} Option Z non disponible dans le cas d'IE3 aux tailles 63 et 71

¹⁾ L'option HL doit être montée de façon inclinée dans certaines circonstances – voir WN-0-900-03

Options

Borne de terre externe (ERD)

Une borne de terre résistante à la corrosion est fixée sur le carter du moteur en tant que borne plate avec étrier de serrage ou borne plane.

Par ex.: 112 MP/4 ERD

Protection thermique du moteur (⇒ △ A40)

NORD propose deux composants de protection thermique avec un supplément de prix.

- TW = contrôleur de température à contact libre de potentiel

- TF = TF

= sonde CTP

Tôle parapluie (RD)

Protection contre la pluie et la pénétration de corps étrangers dans les moteurs en position verticale avec arbre vers le bas. Pour les moteurs Ex selon DIN EN 50014, la tôle parapluie est systématiquement prescrite pour un montage vertical avec l'arbre en bas ;

Par ex.: 112 MP/4 RD IM V5 (⇒ 🕮 à partir de D3)

Double capot ventilateur (RDD)

Protection contre la pluie et la neige ainsi que contre la pénétration de corps étrangers dans les moteurs en position verticale avec arbre en bas. Approprié pour les projections d'eau venant de toutes les directions :

Par ex.: 132 SP/4 RDD IM V1 (⇒ 🛄 à partir de D5)

Trous d'évacuation des condensats (KB)

Selon la position de montage, des trous d'évacuation des condensats sont percés au point le plus bas du flasque A ou B. Ceux-ci sont fermés avec des vis à tête cylindrique bombée.

⚠ Indiquer impérativement la position de montage !

Par ex.: 71 SP/4 KB IM B3

Avant la mise en marche et pendant le fonctionnement, ouvrir régulièrement les trous pour évacuer l'eau de condensation.

Résistance de préchauffage (SH)

En cas de fortes variations de température, d'humidité de l'air élevée ou dans des conditions climatiques extrêmes, il est recommandé d'utiliser une résistance de préchauffage. Celle-ci empêche la formation d'humidité à l'intérieur du moteur.

La résistance de préchauffage ne doit pas fonctionner lorsque le moteur est en marche !

Dans la version avec TF ou TW, la boîte à bornes de moteur frein est utilisée. A Dimensions

Versions disponibles : 110 V ; 230 V ; 500 V

Indiquer la tension de raccordement souhaitée !

Par ex.: 100 LP/4 SH 230V

Rotor silumin (WU)

Pour les entraînements dans le domaine de la manutention sans alimentation par variateur ; par ex. 90 S/8-2 WU

▲ Impossible avec les moteurs IE3!

Volant (HR)

Moteurs avec volant à main monté sur le second bout d'arbre ;

par ex.: 132 MP/4 HR (⇒ 🕮 D16)

Isolation contre ambiance humide (FEU)

En cas d'utilisation des moteurs dans un environnement humide, nous recommandons la version avec isolation contre ambiance humide.

Par ex.: 71LP/4 FEU

Second bout d'arbre (WE)

Moteurs avec second bout d'arbre, côté B. Pour des moteurs avec ou sans frein. Cette option <u>ne peut pas être combinée</u> avec les options ; (⇒ □ D3-D13)

- ▶ Ventilation forcée (F)
- Montage de codeurs (IG)
- ▶ Tôle parapluie (RD)
- ▶ Tôle parapluie pour ambiance textile (RDT)
- ▶ Double capot ventilateur (RDD)

Puissance transmissible et efforts radiaux admissibles pour le second bout d'arbre sur demande.

Par ex.: 112 MP/4 WE

Tôle parapluie pour ambiance textile (RDT)

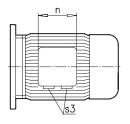
Ces moteurs disposent d'un capot ventilateur conçu spécialement pour un usage dans le domaine textile. L'absence de la grille de protection normale permet d'éviter que des flocons et des peluches ne s'y fixent et n'affectent par conséquent le refroidissement du moteur.

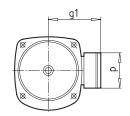
A Possible pour le type de moteur 63 à 132 ;

par ex.: 80 SP/4 RDT IM V5 (⇒ □ D3)

Bobinage tropicalisé (TRO)

En cas d'utilisation des moteurs dans des conditions climatiques extrêmes (tropicales), nous recommandons la version avec bobinage tropicalisé ;


par ex.: 71 LP/4 TRO


Boîte à bornes monobloc (EKK)

Version avec petite boîte à bornes monobloc. Tenir compte du presseétoupe (⇒ ♀ A40) ;

par ex. : 63 LP/4 EKK (⇒ 🛄 D18)

⚠ Impossible avec l'option de frein!

Types	g1 [mm]	n [mm]	p [mm]	S3 (EKK)
63	100	75	75	2x M16 x 1,5
71	109	75	75	2x M16 x 1,5
80	124	92	92	2x M20 x 1,5
90	129	92	92	2x M20 x 1,5
100	140	92	92	2x M20 x 1,5
112	150	92	92	2x M20 x 1,5
132	174	105	105	2x M25 x 1,5

Boîte à bornes moulée (KKV)

Socle de la boîte à bornes moulé vers l'espace intérieur ;

Par ex.: 80 LP/4 KKV

Antidévireur (RLS)

Les antidévireurs servent à empêcher un retour en arrière dû à la charge lorsque le moteur est à l'arrêt.

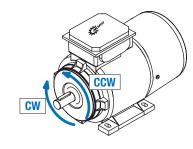
Un entraînement équipé d'un antidévireur ne peut tourner que dans un seul sens. Le sens de rotation souhaité pour l'entraînement doit être indiqué lors de la commande ;

Par ex.: 100 LP/4 RLS CW

Prudence avec les moteurs au nombre de pôles élevé (>4) et fonctionnant avec un variateur de fréquence : tenir compte impérativement du régime de déclenchement ! L'antidévireur ne fonctionne sans usure qu'au-delà du régime de déclenchement.

Types	RLS [Nm]	Vitesse seuil de déclenchement n [min ⁻¹]	Allongement moteur x _{RLS} [mm]
80	130	860	64
90	130	860	75
100	130	860	91
112	370	750	93
132	370	750	107
160	890	670	135
180 .X	890	670	135
180	1030	630	127
200	1030	630	127
225	1030	630	180
250.W	3600	400	180

Longueur du moteur : voir les motofreins !


Le sens de rotation souhaité pour le moteur doit être indiqué lors de la commande !

CW = Clockwise -

rotation dans le sens horaire, rotation à droite

CCW = CounterClockwise -

rotation dans le sens anti-horaire, rotation à gauche

Options

Modes de refroidissement pour les moteurs

Vue d'ensemble des modes de refroidissement EN 60034-6

Désignation	Abréviation anglaise
IC410 Sans ventilateur	TENV
IC411 Auto-ventilation	TEFC (Standard)
IC416 Ventilation forcée	TEBC

Ventilateur propre au moteur avec capot ventilateur IC411 TEFC

Ventilateur propre au moteur + capot ventilateur représentent l'exécution normale pour tous les moteurs dans ce catalogue.

Le ventilateur radial refroidit indépendamment du sens de rotation et est en plastique. Le capot ventilateur est en tôle d'acier recouverte.

⚠ Dans le cas des installations comportant une amenée d'air restreinte, il convient de prévoir la distance minimale suivante :

Longueur moteur + tôle parapluie (LS) moins la longueur moteur (L) D2-3

Ventilateur métal (ML) IC411 TEFC

Un ventilateur métal (en option) peut être commandé à la place du ventilateur en plastique.

Masse d'inertie additionnelle (Z)

Moteur équipé d'un ventilateur en fonte (GJL) pour un démarrage plus en douceur en cas de fonctionnement réseau.

Allongement moteur comme dans le cas des motofreins! ⇒ D14-15

Types	Code de puissance	Moment d'inertie de masse J _z [kgm²]
63	S/L	0,00093
71	S/L	0,0020
80	S/L SH/LH SP/LP	0,0048
90	S/L SH/LH SP/LP	0,0048 0,0100 (dans le cas du frein 40 ⇒ □ B11)
100	L/LA LH/AH LP/AP	0,0113
112	M MH MP	0,0238
132	S/M/MA SH/MH/LH SP/MP	0,0238

Par ex.: 90 S/8-2 Z

Sans ventilateur (OL) IC410 TENV Sans ventilateur / sans capot ventilateur (OL/H)

Option (OL) = Moteur sans ventilateur avec capot ventilateur Option OL/ H = Moteur sans ventilateur et sans capot ventilateur

Par ex.: 63 S/4 OL/H (⇒ □ D18)

Avantage: > pas de bruit de ventilateur,

▶ longueur réduite dans le cas de l'option OL/H

A Réduction de la puissance avec le fonctionnement S1.

Dans le cas des modes de fonctionnement avec durée de connexion réduite, la puissance nominale peut éventuellement être conservée. Ceci doit être vérifié au cas par cas.

Ventilation forcée (F) IC416 TEBC

Les cas d'utilisation typiques de la ventilation forcée sont les entraînements commandés par un variateur de fréquence, fonctionnant pendant une période prolongée à une faible vitesse de moteur et avec le couple nominal complet.

La ventilation est également fréquemment utilisée dans le cas d'applications en fonctionnement tact avec grande fréquence de manœuvre (mode de fonctionnement S4).

La ventilation forcée est intégrée dans le capot ventilateur du moteur et appropriée pour des températures ambiantes de -20°C à +60°C.

La version dispose en série :

- de la classe d'isolation F (exécution spéciale de 24 VCC classe d'isolation E).
- du type de protection IP66
- ▶ de l'homologation CE + cURus

Les ventilations forcées sur les moteurs NORD sont appropriées de facon universelle pour le fonctionnement de 50HZ et 60Hz sur de nombreux réseaux monophasés ou triphasés.

Toutes les ventilations forcées ont une boîte à bornes séparée et peuvent être fournies dans la version spéciale avec une fiche HARTING.

Les ventilations forcées refroidissent le moteur, indépendamment de la vitesse du moteur et en cas de commutation correspondante, même si le

La ventilation forcée doit être raccordée séparément du moteur principal et le moteur principal doit être protégé par la sonde CTP (TF) en cas de panne de la ventilation forcée.

Les ventilations forcées varient selon les tailles de moteurs, comme suit :

- ▶ 63 112 2 pôles
- ▶ 132 250 4 pôles

Caractéristiques techniques - Ventilation forcée (F) IC416 TEBC

Couplage standard pour les ventilations forcées :

- ► Fonctionnement monophasé / couplage Steinmetz dans le cas des tailles de moteurs 63 90 (230V version standard) ainsi que des tailles 63 112 (115V version spéciale)
- Fonctionnement triphasé couplage∆ou Y dans le cas des tailles de moteurs 100 - 250

Version standard : Ventilations forcées pour le fonctionnement de 50 Hz et 60 Hz

		Fonctionnement monophasé					
50 Hz		$U_{_{N}}$	l _{max}	P_{max}	$n_{_{\rm N}}$		
		[V]	[mA]	[W]	[r/min]		
	63	230 - 277	180	46	2710		
	71	230 - 277	180	48	2730		
	80	230 - 277	190	48	2650		
	90	220 - 277	290	59	2890		
	100	220 - 277	290	62	2820		
SS	112	220 - 277	270	64	2750		
Tailles	132	230 - 277	330	48	1460		
<u> </u>	160	230 - 277	340	59	1400		
	180	230 - 277	340	59	1400		
	200	220 - 277	340	59	1400		
	225	-	-	-	-		
	250	-	-	-	-		

Fonctionnement triphasé						
$U_{N}\!\Delta$	$I_{max}\!\Delta$	$U_N Y$	I _{max} Y	P_{max}	$n_{_{\rm N}}$	
[V]	[mA]	[V]	[mA]	[W]	[r/min]	
200 - 303	150	346 - 525	90	28	2830	
200 - 303	150	346 - 525	90	29	2820	
200 - 303	160	346 - 525	90	33	2760	
200 - 303	390	346 - 525	220	78	2890	
200 - 303	370	346 - 525	210	80	2830	
200 - 303	350	346 - 525	200	87	2780	
200 - 303	420	346 - 525	240	67	1450	
200 - 303	430	346 - 525	250	84	1420	
200 - 303	430	346 - 525	250	84	1420	
200 - 303	430	346 - 525	250	84	1420	
200 - 400	910	346 - 525	310	238	1410	
200 - 400	910	346 - 525	310	238	1410	

		Fonctionnement monophasé					
60 Hz		$U_{_{N}}$	l _{max}	P_{max}	$n_{_{\rm N}}$		
		[V]	[mA]	[W]	[r/min]		
	63	230 - 277	210	54	3120		
	71	230 - 277	210	56	3100		
	80	230 - 277	220	59	2830		
	90	220 - 277	230	61	3440		
	100	220 - 277	280	73	3340		
SS	112	220 - 277	360	88	3170		
Tailles	132	230 - 277	230	53	1740		
100	160	230 - 277	290	71	1680		
	180	230 - 277	290	71	1680		
	200	220 - 277	290	71	1680		
	225	-	-	-	-		
	250	-	-	-	-		

Fonctionnement triphasé						
$U_{N}\Delta$	$I_{max}\Delta$	$U_{N}Y$	$I_{max}Y$	P _{max}	n _N	
[V]	[mA]	[V]	[mA]	[W]	[r/min]	
220 - 332	140	380 - 575	80	29	3420	
220 - 332	130	380 - 575	70	28	3370	
220 - 332	130	380 - 575	70	36	3250	
220 - 332	320	380 - 575	180	71	3430	
220 - 332	300	380 - 575	180	80	3390	
220 - 332	290	380 - 575	170	93	3260	
220 - 332	360	380 - 575	210	55	1730	
220 - 332	370	380 - 575	210	86	1670	
220 - 332	370	380 - 575	210	86	1670	
220 - 332	370	380 - 575	210	86	1670	
220 - 400	620	380 - 575	340	247	1670	
220 - 400	620	380 - 575	340	247	1670	

Exécution spéciale : Ventilation forcée pour le fonctionnement de 115 V_{CA}

		Fonctionnement monophasé					
60 Hz		U _N	l _{max}	P _{max}	$n_{_{\rm N}}$		
		[V]	[mA]	[W]	[r/min]		
	63	100 - 135	560	49	3540		
	71	100 - 135	550	54	3530		
ro.	80	100 - 135	570	57	3500		
Tailles	90	100 - 135	650	65	3440		
<u>ia</u>	100	100 - 135	690	75	3450		
	112	100 - 135	800	86	3170		

_		kg	D	Débit, minimal		
Types	;	Ng.	50 Hz V [m³/h]	60 Hz V [m³/h]	DC V [m³/h]	
	63	1,55	52	63	54	
SS	71	1,60	76	91	78	
) <u>0</u>	80	1,65	123	131	128	
2 pôles	90	2,20	216	258	216	
	100	2,40	277	323	278	
	112	2,60	351	406	355	
	132	3,20	290	340	-	
	160	4,70	513	620	-	
<u>les</u>	180	4,70	513	620	-	
4 pôles	200	4,70	513	620	-	
4	225	6,70	1062	1237	-	
	250	6,70	1062	1237	-	

Exécution spéciale : Ventilation forcée pour le fonctionnement de 24V_{cc}

		Fonctionnement à courant continu				
DC		U_{N}	l _{max}	P_{max}	$n_{_{\rm N}}$	
		[V]	[mA]	[W]	[r/min]	
	63	24	300	7,2	2740	
	71	24	440	10,5	2740	
10	80	24	520	12,5	2750	
Tailles	90	24	790	19,0	2730	
	100	24	1150	27,6	2730	
	112	24	1620	38.8	2730	

Schémas de raccordement	⇒ □ A35
Détails relatifs au presse-étoupe	⇒ 🕮 A40
Niveau de bruit	⇒ □ A41
Dimension pour l'allongement moteur	⇒ □ D14-15

Options

Codeur

Codeur incrémental magnétique (MG)

Un système à codeur incrémental économique, robuste et flexible est aussi proposé pour les moteurs NORD d'une hauteur d'axe de 63 à 180. Le système fonctionne sur la base d'un principe de mesure magnétique sans contact et ne nécessite pas son propre palier II est ainsi très résistant aux vibrations et insensible aux chocs qui affectent l'unité d'entraînement.

Le montage du codeur s'effectue du côté B du moteur. Par le biais de trous taraudés, le codeur magnétique est fixé sur l'arbre et le capteur d'évaluation sur le capot ventilateur. La tolérance pour l'alignement du système est de +/- 1 mm sur les 3 axes. L'utilisation à proximité de freins électriques est également possible grâce à une conception spéciale du système magnétique.

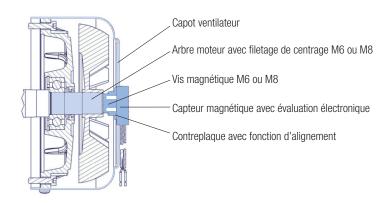
Le codeur fournit 2 canaux de sortie (voies A et B) qui émettent des flancs d'impulsion décalés de 90°. Cela permet une détection du sens de rotation et un quadruplement des impulsions.

NORD propose comme plus petite résolution un codeur à 1 impulsion/tour (1 ppr) qui émet un "1" puis un "0" tous les 180° sur l'arbre moteur. Cela permet des surveillances plus économiques qui ne nécessitent pas d'entrée rapide de PLC ou de compteur. Les temps d'impulsion peuvent légèrement osciller car la précision absolue est généralement de 200 ppr.

De plus, NORD propose un codeur magnétique avec réglage de piste zéro (MGZ), qui prend en charge les tâches simples d'un codeur incrémental. Cette version est disponible en version 1024 ppr.

Affectation des fils/Couleur	Affectation de fonction
rouge	Tension d'alimentation (+)
noir	Tension d'alimentation (-)
marron	Canal A
orange	Canal B
vert	Réglage de piste zéro (uniquement MGZ)

Caractéristiques techniques	Plage de valeurs				
Résolutions standard	1 ppr, 32 ppr, 256 ppr, 512 ppr, 1024 ppr (impulsions/tour)				
Signaux de sortie (voies A et B)	Push-pull niveau HTL/40 mA max./résistant aux courts-circuits				
Tension d'alimentation et consommation de courant sans charge	10-30 VCC / < 30 mA (MGZ = 8-35 VDC)				
CEM et résistance aux décharges électrostatiques	EN 55022 : classe B (30 à 1000 MHz) EN 61000-4-4, EN 61000-4-5 : 1 kV EN 61000-4-2 : contact 4 kV/air 8 kV EN 61000-4-6 : 10 Vemk EN 61000-4-3 : 30V/m EN 61000-4-8 : 30 A/m				
Plage de températures	-20 80 °C				
Plage de vitesses	0 5000 min ⁻¹				
Type de protection	IP68				
Longueur du câble de connexion et section de la gaine	1000 mm/Ø 4,9 mm				
Nombre de fils et section	4x Ø 0,34 mm² (AWG22) (MGZ = 5x Ø 0,34 mm²)				
Modification des dimensions du moteur	max. 20 mm plus long				


Montage du système à codeur magnétique

La procédure de montage du système à codeur magnétique reste très simple grâce à une fonction d'alignement automatique. L'alignement se fait automatiquement lorsque les vis sont serrées sur le capot ventilateur et le boîtier du capteur.

Lors de la marche d'essai qui suit, seuls les ergots d'aide à l'alignement s'érodent légèrement au niveau de la contreplaque. Pour terminer, le câble de connexion est fixé sur le capot ventilateur et guidé jusqu'à la boîte à bornes.

⚠ Allongement moteur dans le cas du codeur magnétique ⇒ ☐ D17.

Vue en coupe / Longueur de câble

Codes de type	Options
MG = Codeur magnétique 01 = 1 impulsion 20 = 32 impulsions 45 = 256 impulsions 55 = 1024 impulsion 0 = Extrémités de câble desserrées (standard)	 MG M Fiche à brides M12, code A, à 4 pôles sur la boîte à bornes MG N Fiche d'accouplement M12, code A, à 4 pôles MG V Connecteur de câbles à 4 pôles pour extension de câble

Par ex. MG 45 0 Codeur magnétique (MG) avec 256 impulsions (45) et extrémités de câble desserrées (0)

Affectation Affectation de fonction Fiche d'accouplement / Connecteur de câbles		Affectation de fiche M12	Affectation de fonction	
Broche 1 / rouge	Tension d'alimentation (+)	Broche 1 /marron	Tension d'alimentation (+)	
Broche 2 / marron	Canal A	Broche 2 / blanc	Canal A	
Broche 3 / orange	Canal B	Broche 3 / bleu	Canal B	
Broche 4 / noir	Broche 4 / noir Tension d'alimentation (-)		Tension d'alimentation (-)	
		Broche 5 / vert	Réglage de piste zéro (uniquement MGZ)	

Options

Codeur

Codeur incrémental (IG)

Les applications à entraînements modernes requièrent fréquemment une réduction de la vitesse de rotation. Pour cela, des codeurs incrémentaux sont en principe utilisés. Selon le principe de construction, les codeurs incrémentaux reçoivent les impulsions de façon magnétique ou photoélectrique via des contacts glissants.

Les codeurs incrémentaux (IG) qui se trouvent avec l'application NORD fonctionnent en général selon le principe photo-électrique par détection d'un disque de réseau de diffraction à traits. Ou bien, il est possible d'utiliser à la place des codeurs incrémentaux avec lesquels la détection est effectuée de façon magnétique (MG).

Le système électronique intégré convertit les signaux de mesure en un signal rectangulaire numérisé selon la logique TTL ou HTL. Des modèles avec une résolution différente / nombre de points sont disponibles. Le codeur standard a 4096 impulsions par tour.

En combinaison avec les variateurs de fréquence NORD, les codeurs incrémentaux permettent de répondre aux exigences suivantes :

- régulations de vitesses sur une grande plage de variation
- haute précision de vitesse, indépendamment de la charge
- régulations du synchronisme
- régulations de positionnement
- couples à l'arrêt
- capacités de surcharge élevées

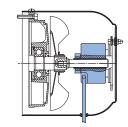
		Type / nombre de points					
Caractéristiques techniques		IG1 / 1024 IG2 / 2048 IG4 / 4096	IG11 / 1024 IG21 / 2048 IG41 / 4096	IG12 / 1024 IG22 / 2048 IG42 / 4096			
Interface		TTL / RS 422	TTL / RS 422	HTL Contre-mesure			
Tension de service +U _B	[V]	5 (±5%)	10 à 30	10 à 30			
Fréquence de sortie max.	[kHz]		300				
Vitesse de fonctionnement max.	[tr/min]	6000					
Température ambiante	[C]	- 20+80					
Type de protection			IP66				
Consommation de courant max.	[mA]	90	90	150			

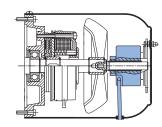
Montage des codeurs incrémentaux

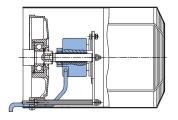
Le montage des codeurs est possible dans le cas de moteurs aux tailles 63 à 225.

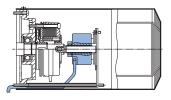
Les moteurs peuvent être pour cela auto-ventilés ou avec ventilation forcée, avec ou sans frein.

Les codeurs à arbre creux sont montés chez NORD sous le capot ventilateur, de manière protégée, directement sur le bout d'arbre du moteur du côté B. Ceci garantit un couplage du codeur sûr et évite tout problème de torsion.


Le raccordement électrique se fait via un câble (en principe d'une longueur de 1,5 m avec extrémité de câble ouverte, d'autres longueurs ou une exécution avec fiche sont possibles).


Câble	Rayon de courbure (standard)
à montage fixe	26 mm
à montage flexible	78 mm


Codeur sans fiche


L'extrémité du câble est scellée avec le blindage électrostatique. Ceci protège le codeur contre des tensions électrostatiques. Le raccordement doit être effectué conformément à la décharge d'électricité statique! ⚠ Codeur avec tôle parapluie (RD) seulement possible avec le montage de ventilation forcée (F) !

Exemples de schémas

Le choix du codeur en fonction de la logique de sortie dépend de l'interface de l'électronique d'exploitation. Les conditions suivantes s'appliquent aux variateurs de fréquence NORDAC :

Série de variateurs de fréquence NORDAC		Logique des codeurs incrémentaux	₽₽
SK500P, SK510P SK530P, SK550P	NORDAC PRO (SK500P)	* HTL mit 10 – 30V Versorgung TTL mit 10 – 30V Versorgung	BU 0600
SK520E, SK530E, SK535E, SK540E, SK545E	NORDAC PRO (SK500E)	TTL mit 10 – 30V Versorgung	BU 0500 / BU 0505
SK200E, SK205E, SK210E, SK215E, SK220E, SK225E, SK230E, SK235E	NORDAC FLEX (SK200E)	* HTL mit 10 – 30V Versorgung	BU 0200
NORDAC LINK	(SK250E - FDS)	* HTL mit 10 – 30V Versorgung	BU 0250

De plus amples détails sont disponibles dans les modes d'emploi des variateurs de fréquence, par ex. BU 0500E. Un module électronique externe pour la conversion des signaux HTL en TTL (par ex. connexion du codeur à 530P avec de très longs câbles) peut être fourni par NORD en tant que module.

^{*} jusqu'à une longueur du câble du codeur de max. 10 m M20x1,5)...

Options

Codeur

Codeur absolu (AG)

Les codeurs absolus sont des capteurs de mesure pour des mouvements rotatifs qui émettent une information de position absolue dans l'intervalle d'un tour de moteur (360°, monotour) ou en supplément, le nombre de tours lié à un point zéro (multitour).

Les valeurs typiques sont de 8192 (13 bits) points par tour et dans le cas de codeurs absolus multitours en supplément 4096 (12 bits) tours distincts.

Les codeurs monotours sont montés sur l'installation côté sortie (en standard : table tournante), tandis que les codeurs multitours peuvent être montés sur l'installation côté sortie du réducteur ou directement sur le moteur.

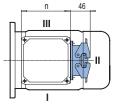
La mesure des tours est effectuée dans le codeur absolu soit de manière entièrement électromagnétique ou mécanique, car de petits trains de réducteur abaissent la vitesse de disques de code supplémentaires.

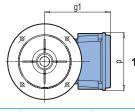
Avantage par rapport au codeur incrémental dans les applications de positionnement

L'information de position est toujours actuelle même en cas de modification de la position dans l'état hors tension ainsi qu'en cas d'impulsions perdues ou perturbées.

Le codeur absolu ne peut pas être utilisé pour la régulation de vitesse (dans le cas de variateurs NORDAC). Mais des codeurs combinés avec des signaux de codeurs incrémentaux absolus et supplémentaires sont disponibles.

Des codeurs absolus avec différents protocoles de données sont disponibles, par ex. SSI, CANopen ou Profibus. Le choix dépend du système électronique d'évaluation.


Vue d'ensemble des codeurs absolus multitours


(pour la série SK500E et SK200E, seuls certains codeurs absolus CANopen sont autorisés)

Type de codeur	AG2 - Multitour Codeur absolu avec signaux incrémentaux (TTL)	AG7 - Multitour Codeur absolu	AG1 - Multitour Codeur absolu avec signaux incrémentaux (TTL)	AG4 - Multitour Codeur absolu avec signaux incrémentaux (HTL)	AG3 - Multitour Codeur absolu avec signaux incrémentaux (TTL)	AG6 - Multitour Codeur absolu avec signaux incrémentaux (HTL)
Pour type de variateur	type de variateur SK 54xE / SK 5xxP avec SK CU5-ENC/MLT SK 54xE, SK 5x SK 54xE, SK 5x SK 530P / SK550P avec SK CU5-MLT		SK 53xE, SK54xE, SK 530/550P	SK 2xxE, SK 5xxP	SK 53xE, SK54xE, SK 530/550P	SK 2xxE, SK 5xxP
Résolution monotour	8192 (13 bits)	8192 (13 bits)	8192 (13 bits)	8192 (13 bits)	8192 (13 bits)	8192 (13 bits)
Résolution multitour	4096 (12 bits)	4096 (12 bits)	4096 (12 bits)	4096 (12 bits)	65536 (16 bits)	65536 (16 bits)
Interface	SSI-Gray-Code Profil CANopen DS406 V3.1		Profil CANopen DS406 V3.1	Profil CANopen Profil CANopen DS406 V3.1 DS406 V3.0		Profil CANopen DS406 V3.1
Adresse CAN/vitesse de transmission	-	réglables	réglables	réglables	réglables	réglables
Capot de bus	-	oui	oui	oui	oui	oui
Sortie du codeur incrémental	TTL / RS422 2048 impulsions	non	TTL / RS422 2048 impulsions	HTL 2048 impulsions	TTL / RS422 2048 impulsions	HTL 2048 impulsions
Tension d'alimentation	10 – 30 VCC	10 - 30 VCC	10 – 30 VCC	10 - 30 VCC	10 – 30 VCC	10 - 30 VCC
Référencement	Entrée SET	via CANopen	via CANopen	via CANopen	via CANopen	via CANopen
Principe de balayage	optique / mécanique	optique / mécanique	optique / mécanique	optique / mécanique	optique / magnétique	optique / optique
Exécution de l'arbre	Arbre creux D=12	Trou borgne D=12	Trou borgne D=12	Trou borgne D=12	Trou borgne D=12	Trou borgne D=12
Branchement électrique	ectrique Extrémité de câble Borne 1,5 m		Douille M12	Fiche M12	Borne Codeur incrémental : Fiche M12	Fiche M12
Plage de températures	-30 °C à +75 °C	-40 °C à +80 °C	-40 °C à +80 °C	-40 °C à +80 °C	-25 °C à +85 °C	-25 °C à +85 °C
Degré de protection IP	IP 67	IP 67	IP 67	IP 67	IP 66	IP 66

Connecteur enfichable moteur (MS)

Types		63	71	80	90	100	112	132
g1 / g1 Bre		140	149	158	163	174	184	204 / 219
n	[mm]	114	114	114	114	114	114	122
р		114	114	114	114	114	114	122

Les moteurs (à frein) triphasés de tailles 63 - 132 peuvent être livrés sur demande avec un connecteur enfichable moteur (suffixe de type : MS).

Le connecteur enfichable est monté latéralement sur la boîte à bornes. En version normale, il est orienté vers le capot ventilateur en position II. La fiche peut être montée également en position I ou III.

Côté moteur, pour les tailles 63 - 112, une version à broche de type HAN 10 ES est disponible. Côté client, un connecteur enfichable de type HAN 10ES est nécessaire (fournisseur : Sté Harting).

À partir de la taille 132, une version à broche de type HAN C-modulaire est disponible.

L'affectation déterminée des contacts est prévue pour des moteurs mono-vitesse et à commutation de pôles (bobinage et couplage Dahlander séparés). De même, des contacts sont définis pour les sondes de température CTP ou les contrôleurs de température, ainsi que pour la tension d'alimentation des freins.

Le connecteur enfichable moteur est fourni sans connecteur femelle et un cache de protection permet de le protéger des salissures.

Caractéristiques techniques pour les tailles 63 à 112

Fiche: HAN 10 ES/Han 10 ESS

Nombre de contacts: 10

Intensité: 16 A max.

Tension: 500 V max. (600 V max. selon UL/CSA)

Bornier à ressort

Caractéristiques techniques pour la taille 132

Fiche: HAN C-modulaire

Nombre de contacts : 9

Intensité: 22 A max. Tension: 690 V max.

Bornier à sertir

Veuillez nous contacter pour obtenir des informations détaillées!

Voir les schémas de connexion ⇒ 🕮 A34

Options

Moteurs selon ATEX (RL 2014/34 UE)

Des atmosphères de gaz et de poussière se forment dans divers domaines de l'industrie et de l'artisanat. Elles sont la plupart du temps générées par un mélange d'oxygène associé à des gaz explosifs ou de la poussière explosive, déposée ou tourbillonnante. Pour ces raisons, les moyens d'exploitation électriques et mécaniques destinés aux domaines explosibles sont soumis à des directives et normes nationales et internationales particulières.

Le terme ATEX fréquemment utilisé en matière de protection contre les explosions, a été formé à l'origine à partir des premières lettres d'un ancien titre de directive française "ATmosphères EXplosibles". Se basant sur ce règlement, le Parlement Européen a décidé en mars 1994 d'instaurer la directive 94/9/CE afin d'harmoniser les dispositions juridiques pour appareils et systèmes de protection relatifs à l'utilisation conforme dans des secteurs protégés contre les risques d'explosion.

Lors de la construction de moyens d'exploitation mécaniques et électriques, l'objectif est d'éviter l'inflammation ou au moins d'en limiter les conséquences. C'est ici que les règlements de protection contre les explosions interviennent.

Protection contre les gaz explosibles pour les zones 1 et 2

- Sécurité augmentée Ex eb
- Enveloppe antidéflagrante, boîte à bornes Sécurité augmentée Ex de IIC

Protection de l'explosion de poussière

▶ Zones 21 et 22

Classification en zones pour les gaz, vapeurs et brouillards inflammables

Zone 1:

Domaine dans lequel une atmosphère explosive d'air et de gaz, vapeurs ou brouillards explosibles peut parfois se former, dans des conditions de service normales.

Zone 2:

Domaine dans lequel une atmosphère explosive d'air et de gaz, vapeurs ou brouillards explosibles ne se forme pas normalement ou alors seulement pour une brève période.

Classification en zones pour les poussières inflammables

Zone 21:

Domaine dans lequel une atmosphère explosive sous forme de nuage de poussière inflammable contenu dans l'air est parfois présente en mode de service normal.

Zone 22:

Domaine dans lequel une atmosphère explosive sous forme d'un nuage de poussière inflammable contenu dans l'air ne se forme pas normalement ou alors seulement pour une brève période.

Sécurité augmentée (Ex eb)

Avec les moteurs pour les catégories d'appareils 2G et 3G, c'està-dire les zones Ex 1 et 2, des étincelles et des températures non autorisées selon le type de protection "eb" (sécurité augmentée) sont évitées.

Pour cela, des ventilateurs et des capots ventilateurs, paliers et boîtes à bornes sont mis en place. La faible résistance superficielle des ventilateurs en plastique en est par exemple représentative (en fonction de la vitesse circonférentielle du ventilateur). Des fentes d'aération assez grandes sont présentes entre les pièces tournantes, ainsi que de grands entrefers et lignes de fuite dans la boîte à bornes.

Lors du choix du modèle, il convient de tenir compte du fait que les entraînements du type de protection "e" possèdent souvent une puissance de sortie réduite par rapport au moteur standard correspondant. Ces moteurs possèdent un enroulement autre que celui des moteurs comparables pour les domaines différents de Ex. Cela entraîne une réduction réelle de la puissance! Ces moteurs sont généralement utilisés jusqu'à la classe de température T3.

Protection par enveloppe antidéflagrante (Ex d et Ex de)

Le type de protection "de" correspond à un autre concept de protection :

la construction de ces moteurs résiste aux explosions se produisant dans l'espace intérieur du moteur et empêche que l'explosion ne se répande dans l'atmosphère environnante. Les moteurs correspondants sont équipés de parois d'épaisseurs plus importantes pour résister à la surpression qui se forme à l'intérieur. Ces systèmes impliquent entre autres aussi des ventilateurs du type de protection "e". Les entraînements offrent la même puissance assignée que les moteurs ne disposant pas de la protection Ex et sont utilisables comme les motoréducteurs du type de protection "e" dans les zones 1 et 2. Ces moteurs sont souvent appliqués dans le cas d'un fonctionnement avec variateur de fréquence, freins, codeur et/ou si un niveau élevé de sécurité est requis. Les moteurs à enveloppe antidéflagrante livrés par NORD remplissent les exigences du groupe d'explosion IIC et de la classe de température T4.

De plus amples informations à ce sujet sont disponibles dans

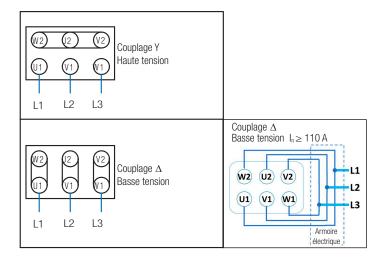
▶ le catalogue G2122 sur la protection contre les explosions

Ce catalogue se trouve aussi sous https://www.nord.com/fr/documentation/catalogues/catalogues.jsp

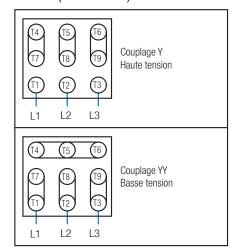
Formulaire de demande moteur

Formulaire de demande générale

Numéro c /ille/code postal/p Cor								Votre of Voir le	ez envoyer locontact NOI site Web: nord.com Distribution)		de à
	Tél. :						Date :				
Pays d'installa	ition :						E-Task :				
Quar	ntité :						Projet :				
						Contac	et société affiliée : _				
Montage Position WN		Hauteur d'axe	Code de puissance	Nombre de pôles	Options mote	ır				Sup	primer la zone
										Com	
Moteur	,	O IE4	O IEO	ا ا	0 154		:		DOL		primer la zone
Classe d'efficacité	9	O IE1	O IE2	IE3	O IE4	Aliment		0	DOL	<u> O</u>	VFD
Tension				[V]			n réseau	-		[Hz]	CO -4-)
Puissance Classe d'isolemer	n+			_[kW] (F, H)			onnement n boîte à bornes			(S1, S2, 3, 4 (1, 2, 3, 4	
Classe de protect				_ (୮, ۱۱)			de câbles			(1, 2, 3, 2 (1, 11, 111, 1	
Matériau du carte				_		Certific				(1, 11, 111, 1	v)
Conditions am		es				Cortino	<u> </u>			Sup	orimer la zone
Température amb		min.	[°C	1		max.	[°C]				
Humidité relative i		max.	[%]	•							
Hauteur de montage	e max.	max.	[m]								
Autres (poussière / s milieux agressifs ; mécanique / chimiqu											
Paramètres du	redre	esseur (si	le frein est	nécessa	ire)					Sup	primer la zone
Couple de freinag	е			[Nm] (dai	ns le cas d'un d	couple de	e freinage DBR par fre	ein)			
Tension de freinage/	bobine			_[V _{CC}] ou			[V _{CA}]				
Type de frein		Frein	d'arrêt/d'urge	ence			Frein de				
ATEX				Supp	orimer la zone	Foncti	ionnement variate	ur de fre	equence	Sup	primer la zone
ATEX Gaz						0	Courbe 50 Hz				
Zone 1	\otimes	II 2G Ex e				\sim	Courbe 87 Hz				
	9	II 2G Ex d				\sim	Courbe 100 Hz				
Zone 2		II 3G Ex e	c 13				Autres	[] [=]			
ATEX Poussière Zone 21	\overline{O}	II 2D T	[°C	1			Fréquence minimun				
Zone 22	\sim	II 3D T					Frequence maximu	111 [112]			
Zone ZZ	ŏ				nt la zone 21)						
	\simeq				iii ia zone z r)						
Commentaires		Foussiere	non conduct	nce							

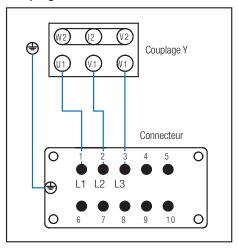


Les formulaires actuels sont disponibles sous ${\underline{\tt https://www.nord.com/fr/documentation/formulaires/forms.jsp}}$

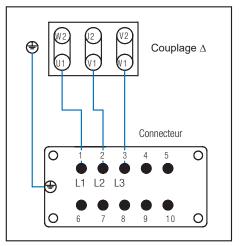


Schémas

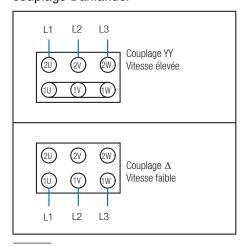
Moteur triphasé

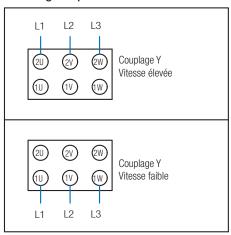


Moteur triphasé NEMA (230 / 460V)

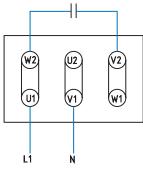


avec connecteur enfichable moteur (MS)

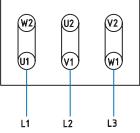

Couplage en étoile Y de 400 V


Couplage en triangle de 400 V Δ

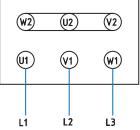
Moteur triphasé à commutation de pôles couplage Dahlander



Moteur triphasé à commutation de pôles bobinage séparé



Schémas de raccordement des ventilations forcées


Fonctionnement monophasé Couplage Steinmetz

230V - 277V 50 + 60Hz

Fonctionnement triphasé Couplage en triangle Δ

200V - 303V 50Hz 220V - 332V 60Hz

Fonctionnement triphasé Couplage en étoile Y

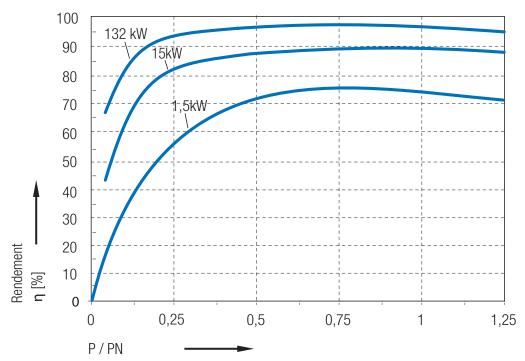
346V - 525V 50Hz 380V - 575V 60Hz

Rendement

Le tableau suivant indique les directives pour le rendement, conformément à la classe d'efficacité, en fonction de la puissance du moteur.

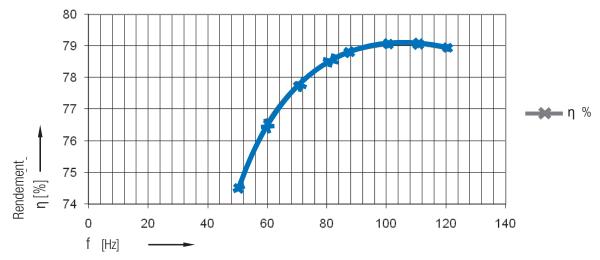
- pour différentes classifications nationales selon le rendement
- pour des moteurs à 4 pôles fermés

Une comparaison directe des rendements n'est pas possible étant donné que les méthodes de mesure sont différentes.


		IEC		Australie Nouvelle- Zélande	IEC	Chine
50	Hz	IE1	IE2	AS/NZS 1359.5:2004 Level 1B	IE3	GB 18613-2020 Grade 3
[kW]	HP	η de consigne [%]	η de consigne [%]	η de consigne [%]	η de consigne [%]	η de consigne [%]
0,55	-	-	-	-	-	80,7
0,73	-	-	-	82,2	-	-
0,75	1,00	72,1	79,6	82,2	82,5	82,3
1,10	1,50	75,0	81,4	83,8	84,1	83,8
1,50	2,00	77,2	82,8	85,0	85,3	85,0
2,20	3,00	79,7	84,3	86,4	86,7	86,5
3,00	4,00	81,5	85,5	87,4	87,7	87,4
4,00	-	83,1	86,6	88,3	88,6	88,3
5,50	7,50	84,7	87,7	89,2	89,6	89,2
7,50	10,0	86,0	88,7	90,1	90,4	90,1
9,20	12,5	-	-	-	-	-
11,0	15,0	87,6	89,8	91,0	91,4	91,0
15,0	20,0	88,7	90,6	91,8	92,1	91,8
18,5	25,0	89,3	91,2	92,2	92,6	92,2
22,0	30,0	89,9	91,6	92,6	93,0	92,6
30,0	40,0	90,7	92,3	93,2	93,6	93,2

Le rendement effectif d'un moteur est plaqué sur la plaque signalétique du moteur. Dans le cas de plages de tensions élargies, le rendement appartenant au point de fonctionnement le moins favorable est plaqué. Avec la tension nominale, le rendement est meilleur que celui indiqué sur la plaque signalétique.

Rapport du rendement et de la charge sur le réseau


Pour une utilisation efficace d'un moteur, il est préférable qu'il fonctionne à proximité de sa puissance nominale. Selon la puissance nominale du moteur, et en particulier dans le cas de moteurs plus petits, le fonctionnement de charge partielle peut être inefficace.

Rapport du rendement et de la plage de fréquences du VF

En cas de fonctionnement d'un moteur sur le variateur de fréquence, le rendement du moteur augmente selon la fréquence avec laquelle il fonctionne.

Dans le diagramme suivant, ce rapport est présenté avec l'exemple d'un moteur 90S/4. Pour les motoréducteurs, il est nécessaire de tenir compte du fait que des vitesses d'entrée plus élevées entraînent des pertes de réducteur augmentées.

Raccordement au secteur / Tensions assignées / Variations de tensions

Tolérance de tension selon DIN IEC 60038

La norme DIN IEC 60038 recommande de ne pas faire varier les tensions aux points de transfert au delà de \pm 10% des nouvelles valeurs de tension nominale.

Anciennes tensions de secteur	Tensions de secteur actuelles
220 V, 380 V, 660 V	230 V, 400 V, 690 V +6/-10%
240 V, 415 V	230 V, 400 V +10/-6%

Écarts de tension et de fréquence admissibles selon DIN EN 60034-1

Les machines à courant alternatif doivent ainsi fonctionner de manière fiable avec une tolérance de \pm 5% par rapport à leur tension nominale ou plage de tension nominale et une tolérance de \pm 2% de leur fréquence nominale. L'échauffement peut alors dépasser la limite de température de leur classe d'isolation (F) de 10K. Les tensions ou plages de tensions indiquées sur les plaques signalétiques des moteurs sont les tensions assignées et plages de tensions assignées, auxquelles la tolérance de tension se rapporte.

Écarts admissibles de tension selon NEMA, CSA

La tolérance de tension admissible selon NEMA et CSA est de \pm 10% par rapport à la tension assignée ou plage de tensions assignées indiquée sur la plaque signalétique.

En Amérique du Nord, la norme ANSI C84.1 différencie

- les tensions de système nominales (Nominal System Voltage -120V, 208V, 240V, 480V, 600V) et les
- ▶ tensions d'utilisation nominales correspondantes (Nominal Utilization Voltage 115V, 200V, 230V, 460V, 575V).

Les appareils de consommation de courant doivent indiquer en conformité les tensions d'utilisation nominales.

Les marquages des moteurs électriques avec 120V, 208V, 240V, 480V ou 600V ne sont pas conformes ni courants en Amérique du Nord.

Tension de système	Tension des appareils / consommateurs de courant
600 V	575 V
480 V	460 V
240 V	230 V
208 V	200 V
120 V	115 V

Tension assignée des moteurs NORD

Selon la norme DIN EN 60 034, ils fonctionnement parfaitement en service continu à \pm 5% de ces plages de tensions. Ainsi, le fonctionnement fiable est garanti dans la plage conseillée des tensions de la norme IEC, en l'occurrence 230V, 400V et 690V +/-10%.

Les moteurs NORD suivant NEMA, CSA (cCSAus), UL ne sont plaqués qu'avec la tension assignée, et non pas avec une plage de tensions assignées. L'écart de tension autorisé correspond donc à \pm 10% de la tension assignée plaquée.

Tension et fréquence

Les moteurs triphasés NORD sont bobinés comme suit :

- jusqu'à puissance nominale < jusqu'à 7,5 kW pour 230/400V Δ/Y 50Hz
- à partir de la puissance nominale de 3,0 kW pour 400/690V Δ/Y 50Hz

Utilisation de moteurs 50 Hz sur des réseaux de 60 Hz

Valeurs de référence pour les facteurs de conversion des valeurs

50 Hz	60 Hz	n _N *	P_{N}	M _N	I _N	M _A /M _N M _K /M _N	I _A /I _N
230 V	230 V	env. 1,2	1,00	0,83	1,00	0,80	0,80
400 V	400 V	env. 1,2	1,00	0,83	1,00	0,80	0,80
400 V	460 V	env. 1,2	1,00	0,83	0,90	1,10	1,10
400 V	460 V	env. 1,2	1,15	0,96	1,00	1,00	1,00
500 V	500 V	env. 1,2	1,00	0,83	1,00	0,80	0,80
500 V	575 V	env. 1,2	1,00	0,83	0,90	1,10	1,10
500 V	575 V	env. 1,2	1,15	0,96	1,00	1,00	0,90

^{*} Le rapport de nombre de tours réel dépend du type de moteur.

Les moteurs NORD sont livrables également avec un bobinage spécifique pour d'autres tensions et d'autres fréquences.

Conditions ambiantes particulières

Classe thermique 155 (F)

Les bobinages des moteurs NORD sont exécutés dans la classe d'isolation 155 (F). Avec des températures d'air de refroidissement jusqu'à 40°C et des hauteurs de montage maximales de 1000 m, l'échauffement maximum admis en température est de 105 K.

La température maximale autorisée pour les bobinages est de 155°C.

Ce tableau contient des valeurs de référence pour une réduction de la puissance qui couvrent tout le spectre des moteurs, même ceux avec une utilisation thermique élevée. Pour les moteurs avec une utilisation thermique faible ou modérée, des valeurs légèrement plus élevées s'appliquent. Même les valeurs des moteurs pour les atmosphères explosives sont différentes.

	40°C	45°C	50°C	55°C	60°C
1000 m	100%	96%	92%	87%	82%
1500 m	97%	93%	89%	84%	80%
2000 m	94%	90%	86%	82%	77%
2500 m	90%	86%	83%	78%	74%
3000 m	86%	83%	79%	75%	71%
3500 m	83%	80%	76%	72%	68%
4000 m	80%	77%	74%	70%	66%

Classe thermique 180 (H)

Pour les températures ambiantes jusqu'à 60°C, les moteurs NORD sont disponibles dans une version modifiée. Les bobinages sont exécutés dans la classe d'isolation 180 (H) et des pièces à température critique sont remplacées par des pièces appropriées. Pour l'élaboration du projet, les valeurs indiquées aux pages ⇒ 🕮 C2-3 peuvent être utilisées.

Toutes les options ne sont pas possibles. Veuillez nous contacter!

Température ambiante < -20°C et > 60°C

Dans le cas de températures de refroidissement < -20°C et > 60°C, des modifications techniques du moteur sont requises. Le type de modification est choisi en fonction de l'application.

- Installation à l'extérieur ⇒ 🕮 A41. 42
- Entraînement immergé ou submersion temporaire

Si des moteurs ou des motoréducteurs doivent fonctionner temporairement ou en permanence dans un état immergé, ils doivent être choisis en fonction de leur type et de l'application. Les informations ci-après sont requises pour obtenir une offre. Les entraînements immergés ne font pas partie de ce catalogue mais peuvent être individuellement planifiés et proposés.

- ▶ Fonctionnement dans un état émergé ou immergé
- ▶ Profondeur d'immersion
- ▶ Fluide dans leguel l'immersion est effectuée
- Le fluide est sali par des matières abrasives (sable, etc.)
- ▶ Température du fluide dans lequel l'immersion est effectuée
- Longueur de câble souhaitée
- Application nécessitant de la bio-huile / peinture biologique
- ▶ Heures de fonctionnement par an
- ▶ Un montage direct du moteur sur le réducteur est autorisé (préférable)

Surveillance thermique du moteur

Un choix judicieux du moteur permet une protection contre la surchauffe selon l'application ou les conditions ambiantes. Des facteurs pouvant entraîner la surchauffe du moteur, sont par ex. une surcharge, des températures ambiantes élevées, une arrivée d'air de refroidissement limitée et une vitesse de moteur faible due au fonctionnement du variateur.

NORD propose deux composants de protection thermique avec un supplément de prix.

- ▶ TW = contrôleur de température à contact libre de potentiel
- ▶ TF = sonde CTP

Ceci permet de surveiller directement la température des bobinages en cas d'utilisation maximale de la puissance du moteur.

Trois (un par ligne) TW ou TF raccordés en série sont montés sur les points les plus chauds des bobinages. Leurs connexions sont ramenées sur 2 bornes dans la boîte à bornes.

A Pour le fonctionnement du variateur de fréquence, en cas de démarrage difficile, fonctionnement par à-coups, température ambiante élevée, refroidissement limité, etc., une protection du moteur par TW ou TF est vivement recommandée.

Contrôleur de température (TW)

(Autres désignations usuelles : déclencheur à ouverture, klixon, contact à ouverture libre de potentiel)

Le contrôleur de température est un interrupteur bilame miniature blindé, généralement prévu pour un fonctionnement en tant que contact à ouverture.

Il doit être câblé de manière qu'une fois la température limite atteinte, il coupe l'auto-maintien du contacteur du moteur. Le contacteur tombe et arrête le moteur.

C'est seulement après une baisse importante de la température que le déclencheur thermique referme ses contacts.

Température de déclenchement : 155° C

Intensité nominale: 1,6 A à 250 V

Exécution du commutateur : contact à ouverture (bornes TB1 + TB2) Également disponible en 2TW, pour l'avertissement et la coupure!

Sonde de température (TF)

(Autres désignations usuelles : sonde CTP)

La sonde de température augmente brutalement sa valeur de résistance d'un facteur 10, lorsque sa température nominale de déclenchement (NAT) est atteinte.

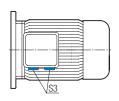
La sonde de température ne remplit sa fonction de protection que si elle est raccordée à un dispositif de déclenchement!

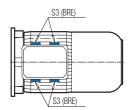
Un dispositif de déclenchement analyse l'augmentation de la résistance et coupe l'entraînement.

Température de déclenchement : 155° C

Tension max. 30 V Bornes TP1 + TP2

Livrables également en exécution avec 2TF, pour alerte et coupure!


Par ex. : $130^{\circ}C = alerte$, $155^{\circ}C = coupure$


Niveau d'oscillation A selon DIN EN 60034-14

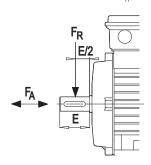
Les moteurs triphasés NORD sont exécutés selon le niveau d'oscillation A.

Presse-étoupes

Moteur standard	Motofrein
Types 63 - 250	Types 63 - 132
Motofrein	
Types 160 - 250	

Types	S3	S3 (BRE)
63	M20 x 1,5	M20 x 1,5
71	M20 x 1,5	M20 x 1,5
80	M25 x 1,5	M25 x 1,5
90	M25 x 1,5	M25 x 1,5
100	M32 x 1,5	M32 x 1,5
112	M32 x 1,5	M32 x 1,5
132	M32 x 1,5	M32 x 1,5
160	M40 x 1,5	
180	M40 x 1,5	
200 .X	M40 x 1,5	
225	M50 x 1,5	
250	M63 x 1,5	

A II est préférable de positionner le presse-étoupe de la boîte à bornes le plus bas possible conformément à la position de montage!



Efforts radiaux et axiaux autorisés pour les moteurs IEC / NEMA

Les valeurs indiquées s'appliquent pour une durée de vie des paliers de $Lh=20\,000$ heures, dans le cas de moteurs à 4 pôles en fonctionnement de 50 Hz.

 $F_p = \text{effort radial autorisé pour } F_A = 0$

 $F_{_{\!A}}=$ effort axial autorisé pour $F_{_{\!R}}=0$

Efforts radiaux et axiaux admissibles

Types	F _R [N]	F _A [N]		
63	530	480		
71	530	480		
80	860	760		
90	910	810		
100	1300	1100		
112	1950	1640		
132	2790	2360		
160	3500	3000		
180 .X	3500	3000		
180	5500	4000		
200 .X	5500	4000		
225	8000	5000		
250	sur demande			

⚠ Ces valeurs ne s'appliquent pas au second bout d'arbre.

Veuillez nous contacter pour obtenir la puissance transmissible et l'effort radial admissible de ce dernier !

Les moteurs qui sont directement montés sur un carter sont affectés d'efforts radiaux et axiaux du premier niveau d'engrenage et disposent par conséquent en partie de roulements renforcés.

Paliers

Les moteurs NORD sont équipés de roulements à rouleaux graissés pour toute leur durée de vie. Le palier du côté B sert de palier fixe.

Pour plus d'informations sur le remplacement des roulements à rouleaux, voir la notice de mise en service et d'entretien B1091.

Avec l'option AS66, des roulements à billes étanches sont utilisés (2RSR):

Types	Palier A	Palier B (palier fixe)
63	6202.2Z	6202.2Z
71	6202.2Z	6202.2Z
80	6204.2Z	6204.2Z
90	6205.2Z	6205.2Z
100	6206.2Z	6206.2Z
112	6306.2Z.C3	6306.2Z.C3
132	6308.2Z.C3	6308.2Z.C3
160	6309.2Z.C3	6309.2Z.C3
180 .X	6310.2Z.C3	6309.2Z.C3
180	6312.2Z.C3	6311.2Z.C3
200 .X	6312.2Z.C3	6311.2Z.C3
225	6315.2Z.C3	6313.2Z.C3
250	sur (demande

Émission de bruit

Niveau de pression acoustique et niveau de puissance acoustique

Conformément à la norme DIN EN ISO 3745/44, le niveau de pression acoustique LPA est mesuré dans la pièce à faible résonance à fonctionnement à vide de l'échantillon d'essai. La mesure surfacique Ls [dB] est calculée à partir des dimensions géométriques de l'échantillon d'essai. En ajoutant la mesure surfacique au niveau de pression acoustique, le niveau de puissance acoustique LwA est déterminé. Lors du fonctionnement avec variateur, l'apparition de bruit légèrement élevé est possible en raison de bourdonnements ou de sifflements magnétiques. En cas de vitesses plus élevées dues à des fréquences supérieures à 50 Hz ou 60 Hz, le bruit de ventilateur est amplifié. Des ventilations forcées sont directement alimentées par le réseau. Leur effet de refroidissement et leur émission de bruit sont indépendants de la vitesse du moteur.

Niveau de pression surfacique et niveau de puissance acoustique en cas de fonctionnement réseau, avec les moteurs à 4 pôles

		IC411 / TEFC			IC416 / TEBC					
Tolérance		autoventilation			avec ventilation forcée					
± 3 [dB(± 3 [dB(A)]		50 Hz 60 Hz 1500/min 1800/min		50 Hz		60 Hz			
	Types		L _{PA}	L _{wa}	L _{PA}	L _{wa}	L _{PA}	L _{WA}	L _{PA}	L _{WA}
IE1	IE2	IE3			(A)]			[dB	(A)]	
63 S/L	-	63 SP/LP	40	52	44	56	47	59	50	62
71 S/L	-	71 SP/LP	45	57	49	57	51	63	53	65
80 S 80 L	80 SH 80 LH	- 80 LP	47	59	51	63	56	68	59	71
90 S 90 L	90 SH 90 LH	90 SP 90 LP	49	61	53	65	61	73	65	77
100 L 100 LA	100 LH 100 AH	100 LP 100 AP	51	64	55	68	59	72	63	76
112 M	112 MH	112 MP	54	66	58	70	61	74	64	77
132 S - -	132 SH 132 MH 132 LH	132 MP	60	73	64	77	57	70	60	73
- 160 M 160 L	160 SH 160 MH 160 LH	160 SP 160 MP 160 LP	66	79	70	83	60	73	64	77
180 MX 180 LX	-	-	66	79	70	83	60	73	64	77
-	180 MH 180 LH	180 MP 180 LP	62	75	66	79	60	73	64	77
200 LX	200 XH	-	62	75	66	79	60	73	64	77
-	-	225 RP								
-	225 SH	225 SP				sur de	mande			
-	225 MH	225 MP								
-	250 WH	250 WP								

Degrés de protection selon DIN EN 60034-5

Protection contre les contacts accidentels de pièces en mouvement et sous tension, ainsi que la protection contre l'introduction de corps étrangers, de poussière et d'eau. Le degré de protection est indiqué par les lettres IP (International Protection) et deux chiffres. (par ex. IP55)

	Deg	Degré de protection			
Premier chiffre	Descriptif	Explication selon la norme IEC60034-5			
5	Protection contre le contact, les corps étrangers, la poussière	Protection intégrale contre le contact. La poussière ne peut pas entrer en quantité dommageable			
6	Protection contre le contact, les corps étrangers, la poussière	Protection intégrale contre le contact. La poussière ne peut pas pénétrer.			
Deuxième chiffre	Descriptif	Explication			
5	Protection contre l'eau	Protection contre les projections d'eau venant de toutes les directions. L'eau ne peut pas entrer en quantité dommageable.			
6	Protection contre l'eau	Protection contre la mer agitée et les fortes projections d'eau venant de toutes directions. L'eau ne peut pas entrer en quantité dommageable.			

Moteur installé à l'intérieur

Pour l'installation d'un moteur à l'extérieur, NORD recommande les options suivantes :

	Montage intérieur, sec	Montage intérieur, humide
Version moteur	IP 55 (standard)	IP 55 (standard)
Variations de température et/ou humidité élevée de l'air	-	KB, SH, FEU
Position de montage verticale	RD	RDD

Installation à l'extérieur du moteur

Pour l'installation d'un moteur à l'extérieur, NORD recommande les options suivantes :

	Installation à l'extérieur	Conditions ambiantes extrêmes			
Version moteur	IP 55 (standard)	IP 66			
Variations de température et/ou humidité élevée de l'air	AS55 ou AS66, KB, SH, EP				
Position de montage verticale	RD	RDD			

L'option KKV (boîte à bornes moulée) peut être livrée pour les deux types de montage, à la demande du client.

Installation à l'extérieur AS66 ou AS55

En cas d'installation à l'extérieur ou d'utilisation des moteurs dans un environnement humide, nous vous recommandons l'option AS66 ou AS55.

Mesures de l'exécution AS66	Mesures AS55 - uniquement sur les motofreins
▶ Type de protection IP66	▶ Protection IP55
▶ Boîte à bornes moulée (étanchéité résine entre stator et bornier)	► Frein IP55 avec exécution RG (protection anti-corrosion)
▶ Roulements moteur équipés de disques d'étanchéité (2RS)	▶ Peinture 2 ou 3 couches (⇒ 🚨 A9)
▶ Frein IP66	
▶ Peinture 2 ou 3 couches (⇔ 🖾 A9)	

⚠ En cas d'installation à l'extérieur d'un moteur en position de montage verticale (par ex. IM V1 ou IM V5 ⇒ 🚨 à partir de D2), l'option "double capot ventilateur" (RDD) est vivement recommandée.

Il est préférable de positionner le presse-étoupe de la boîte à bornes le plus bas possible conformément à la position de montage!

Explications techniques B 2 - 9
Caractéristiques techniques B 10 - 11
Calcul de la taille des freins B 12
Options
Variantes de couplage

Motofreins NORD

sont équipés de freins à ressort avec bobine à courant continu. Les freins empêchent les mouvements involontaires des machines (tels des freins d'arrêt) ou immobilisent les mouvements de machines (tels des freins de travail ou de secours).

Environnement

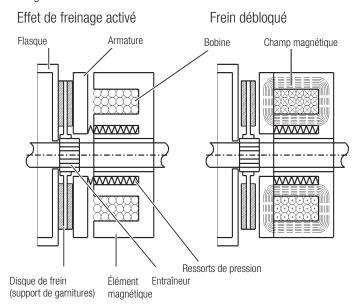
Les garnitures de frein sont exemptes d'amiante.

Sécurité

L'effet de freinage est activé par des coupures de courant,

principe du courant de repos.

En cas de blocage de la garniture de frein, le frein ne peut plus être commandé.

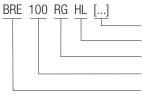

Principe du courant de repos

Le disque de frein se trouve entre le flasque et l'armature. Le disque de frein est doté de garnitures de frein de chaque côté.

Par le biais de l'entraîneur, il transmet le couple de freinage à l'arbre moteur. Le disque de frein peut être déplacé de manière axiale sur l'entraîneur. Sous l'effet de la force du ressort, l'armature presse le disque de frein contre le flasque.

Le frottement entre l'armature et la garniture de frein et aussi entre le flasque et la garniture de frein produit le couple de freinage. Le déblocage des freins est effectué par un électroaimant (élément magnétique).

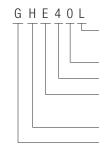
Après le branchement du courant, l'électroaimant tire l'armature contre la force du ressort, de quelques dizaines de mm de la garniture de frein. Le disque de frein peut ainsi tourner librement. Une coupure de courant provoque la rupture de la force magnétique, la force du ressort prédominant alors de nouveau. Ainsi, l'effet de freinage est obligatoirement mis en action.



Principe du courant de travail

Les freins dont l'activation est effectuée par la force d'un électroaimant sont appelés freins à courant de travail. (Veuillez nous consulter !)

Codes de type des freins


Options supplémentaires possibles Déblocage manuel du frein Protection anti-corrosion Taille de frein / couple de freinage Frein

Exemple

BRE 40 FHL SR
Frein 40 Nm
avec déblocage manuel encliquetable FHL
protection anti-poussière et anti-corrosion SR

Codes de type des redresseurs

Exemple

Protection des composants électroniques Intensité maximale admissible Plage de tensions Type de mise hors tension côté courant continu Type de redressement Redresseur

Explications

Première position :

G: redresseur

2. position : type de redressement

H: redresseur simple alternance

V : pont redresseur (double alternance)

P : Push (double alternance brièvement, puis simple alternance)

redresseur à action rapide

3. position : type de mise hors tension côté courant continu

E: par contact externe (contacteur)

U : par évaluation interne de la tension

Quatrième position : plage de tensions

2 : jusqu'à $275V_{CA}$

4 : jusqu'à 480V_{CA}

5 : jusqu'à 575V_{CA}

Cinquième position : intensité max. admissible

⇒ 🕮 B10

Sixième position : protection des composants électroniques contre les vibrations et l'humidité

L : couche de peinture

V : scellement hermétique total

Variantes de couplage ⇒ 🕮 à partir de B18

Couple de freinage (M_R)

Le couple de commutation est défini en tant que valeur nominale du couple de freinage selon DIN VDE 0580/2011/11 dans le cas d'une vitesse de 1m/s, en fonction du rayon de frottement moyen.

Ceci est valable pour les freins après rodage. Le couple de freinage effectif n'est pas identique au couple de commutation, il doit être considéré comme une valeur d'orientation.

La valeur du couple de freinage réellement effectif dépend de la température, de la vitesse de rotation (vitesse de frottement), des conditions ambiantes (saleté, humidité) et de l'état d'usure. Ces facteurs doivent être pris en compte lors de l'élaboration du projet.

Il convient de veiller à ce que les couples de freinage indiqués soient soumis à une tolérance. Les valeurs précises sont en principe indiquées dans la notice de mise en service et de montage.

Le couple complet de freinage n'est disponible qu'après une brève période de rodage.

Les surfaces de frottement des freins doivent être sèches. Elles ne doivent jamais entrer en contact avec de la graisse ou de l'huile! La graisse ou l'huile sur les surfaces de frottement réduisent considérablement le couple de freinage.

Freins à ressort : 5 - 800 Nm IP55

Types	3		BRE 5	BRE 10	BRE 20	BRE 40	BRE 60	BRE 100	BRE 150	BRE 250	BRE 400	BRE 800
	IE1	IE3		M _B [Nm]								
63	S/L	SP/LP	5	10 2)								
71	S/L	SP/LP	5	10								
80 80	S L	SP LP	5H 5	10W 10	20 20							
90 90	S L	SP LP		10 10	20 20	40 40						
100 100	L LA	LP AP			20 20	40 40						
112	M	MP			20	40	60					
132 132 132	S M MA	SP MP -					60 60 60	100 100 100	150 150 150			
160 160 160	- M L	SP MP LP						100 100 100	150 150 150	250 250 250		
180 180 180 180	MX LX -	- MP LP							150 150	250 250 250 250	400 ²⁾ 400 ²⁾	
200	LX	-								250	400 ²⁾	
225 225 225	- - -	RP SP MP								250 250	400 400H* 400	800
250	-	WP									400	800
Série du frein			BR55PH / BR55PW						BR	55MH / BR55I	MW	
Supplé [kg]	ment de	poids	2	3	5,5	7	10	16	22	27	39	62
J [10 ⁻³	kgm²]		0,015	0,045	0,173	0,45	0,86	1,22	2,85	7,18	21,5	42

Couples de freinage en caractères gras : version standard pour moteurs à 4 pôles,

d'autres combinaisons frein-moteur peuvent en résulter pour des nombres de pôles différents

- H Frein d'arrêt
- W Frein de travail
- * pour frein de travail, veuillez vous renseigner
- 2) Déblocage manuel impossible!

Freins à ressort : 5 - 800 Nm IP66

Types	3		BRE 5	BRE 10	BRE 20	BRE 40	BRE 60	BRE 100	BRE 150	BRE 250	BRE 400	BRE 800
	IE1	IE3	M _B [Nm]									
63	S/L	SP/LP	5									
71	S/L	SP/LP	5									
80 80	S L	SP LP	5H 5	10W 10								
90 90	S L	SP LP		10	20							
100 100	L LA	LP AP			20 20	40 40						
112	М	MP			20	40	60					
132 132 132	S M MA	SP MP -					60 60 60	100 100 100				
160 160 160	- M L	SP MP LP						100 100 100	150 150 150	250 250 250		
180 180 180 180	MX LX -	- - MP LP							150 150	250 250 250 250	400 ²⁾	
200	LX	-								250	400 ²⁾	
225 225 225	- - -	RP SP MP								250 250	400 400 400	800
250	-	WP									400	800
Série du frein			BR66PH / BR66PW							BR	66MH / BR66I	VIW
Suppléi [kg]	ment de	poids	2	3	5,5	7	10	16	22	27	39	62
J [10 ⁻³ l	kgm²]		0,015	0,045	0,173	0,45	0,86	1,22	2,85	7,18	21,5	42

Couples de freinage en caractères gras : version standard pour moteurs à 4 pôles,

d'autres combinaisons frein-moteur peuvent en résulter pour des nombres de pôles différents

H Frein d'arrêt

W Frein de travail

2) Déblocage manuel impossible!

Choix de la combinaison standard moteur - frein

Le choix d'une combinaison standard moteur - frein proposée dans le tableau ci-dessus doit être vérifié avec soin lors de l'étude du projet! Le couple de freinage doit impérativement correspondre aux exigences relatives à l'application.

Il convient pour cela de tenir compte du fait que des moteurs de même nature, mais avec un nombre de pôles distinct développent des couples très différents. C'est particulièrement le cas si l'on compare un moteur 4 pôles avec un moteur 8-2 pôles (couples nominaux, de démarrage, de décrochage ⇒ tableau C2-C23).

Le dimensionnement des entraînements doit intégrer aussi bien les besoins en couple de l'application que le couple délivré par le moteur. Si nécessaire, le couple de freinage doit être nettement réduit ($\Rightarrow \square$ tableau B5), afin de ne pas provoquer une surcharge du réducteur compte tenu des masses importantes entraînées ($\Rightarrow \square$ B11 "Choix de la taille du frein").

Frein d'arrêt • Frein de travail • Frein d'arrêt d'urgence

Une différenciation entre "frein d'arrêt", "frein de travail" et "frein d'arrêt d'urgence" intervient en fonction de la nature de l'application. Un frein d'arrêt doit maintenir à l'arrêt une chaîne cinématique déjà arrêtée.

Dès qu'un frein doit fournir un travail de frottement considérable, il fonctionne en tant que frein de travail. Le travail de frottement correspondant et la fréquence de commutation doivent être déterminés et pris en compte lors du choix du frein (⇒ B10-12).

Un frein d'arrêt d'urgence s'emploie si d'importantes masses doivent être freinées, avec par conséquent des énergies élevées sollicitant le frein. Dans ce cas, le choix du frein se fait en fonction du travail de frottement maximum admissible par freinage.

Exemples de frein d'arrêt et de frein de travail

Frein d'arrêt

L'accélération et la temporisation de l'application sont commandées par un variateur de fréquence et ce n'est que lorsque l'application s'arrête que le frein à ressort mécanique s'enclenche.

Le frein est ainsi seulement utilisé pour "le maintien à l'arrêt" de l'application (position de stationnement) et n'exerce aucun frottement.

Ce n'est qu'en cas d'arrêt d'urgence ou de panne de courant que le frottement est appliqué pendant la course.

Séries de freins :

BR55PH, BR55MH, BR66PH, BR66MH

Frein de travail

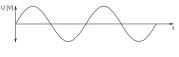
Le motoréducteur fonctionne directement par le biais de l'alimentation en tension locale. Pour ralentir l'application, le frein à ressort mécanique doit appliquer un couple de freinage et exerce ainsi un frottement.

Le frein mécanique est également utilisé pour "l'arrêt" de l'application (position de stationnement).

Séries de freins :

BR55PW, BR55MW, BR66PW, BR66MW

Exécution électrique


Les bobinages des freins sont prévus pour un fonctionnement continu. Ils se réchauffent à la tension nominale en mode débloqué continu selon la classe thermique 130 (B) (augmentation de la température ≤ 80K). Les freins sont alimentés avec du courant continu. Le courant provenant du réseau alternatif est redressé.

Des redresseurs simple alternance et des ponts redresseurs sont disponibles de même que des redresseurs à action instantanée dont la fonction est expliquée dans les paragraphes suivants. Le choix des redresseurs doit se faire en fonction des exigences de l'application.

Dans le cas d'une alimentation en courant continu sans redresseur, veuillez tenir compte de la partie relative aux surtensions ⇒ 🕮 B9 !

Pour protéger les garnitures contre le gel, les freins peuvent être réchauffés de manière électrique, ⇒ ☐ B14 "Résistance de préchauffage frein (BSH)".


Veuillez nous consulter!

Sinusoïde de la tension alternative

Forme de la tension avec redresseurs simple alternance $U_{CC} = U_{CA} \times 0,45$

Forme de la tension avec ponts redresseurs $U_{\text{CC}} = U_{\text{CA}} \ x \ 0.9$

Mode de commutation des freins

La formation du champ magnétique pour le déblocage du frein et sa dissipation lors de l'enclenchement du frein nécessitent un certain temps. Ce retard est souvent indésirable, mais peut être réduit efficacement en prenant des mesures adaptées.

Activation de l'effet de freinage (enclenchement)

Mise hors tension côté courant alternatif (Redresseur GVE, GHE, GPE)

Activation lente de l'effet de freinage

Si seul le côté courant alternatif d'un pont redresseur ou d'un redresseur simple alternance est déconnecté du réseau, un courant continu traverse le redresseur jusqu'à ce que le champ magnétique dans le frein se soit dissipé.

Le frein s'enclenche seulement une fois que le champ magnétique est réduit à un niveau minimum. Le temps nécessaire à la dissipation du champ dépend de l'inductance du frein et de la valeur de résistance de son enroulement. À l'état de livraison, les bornes 3 et 4 du redresseur standard sont chacune reliées par un cavalier de pontage.

Ces cavaliers de pontage ne doivent pas être retirés pour la commutation côté courant alternatif.

Mise hors tension côté courant continu (Redresseur GVE, GHE, GPE) et contact externe

Activation accélérée de l'effet de freinage

Le champ magnétique d'un frein se dissipe vite et l'effet de freinage se produit rapidement lorsque la coupure du courant électrique a lieu "côté courant continu" entre le

redresseur et le frein. Cette coupure peut être assurée par un contact entre les bornes 3 et 4 des redresseurs (voir également les exemples de commutation). Le contact doit être adapté à la charge de commutation par le courant continu. À l'état de livraison, les bornes 3 et 4 du redresseur standard sont reliées par un cavalier de pontage.

Ces cavaliers de pontage doivent être retirés pour effectuer la commutation côté courant continu.

Activation accélérée de l'effet de freinage ⇒ ☐ B15 Option "Relais de courant (IR)"

Activation de l'effet de freinage (enclenchement)

Sous-excitation par redresseur à action rapide (GPU, GPE) par ex. tension réseau de 230 VCA et tension du frein de 205 VCC

Activation très rapide de l'effet de freinage

Si la réduction du temps d'enclenchement par une commutation côté courant continu ne suffit pas, la sous-excitation du frein au moyen d'un redresseur à action rapide est alors recommandée. Après le déblocage du frein, le redresseur à action rapide commute du redressement en pont au redressement en simple alternance. Cela entraîne la réduction de moitié de sa tension de sortie (CC) et de l'intensité du courant. (En état de déblocage électrique, la tension d'alimentation du frein peut être réduite jusqu'à env. 30% de sa valeur assignée, sans que le frein ne s'enclenche.)

Lorsque la tension est diminuée de moitié, l'énergie du champ magnétique est réduite à un quart de sa puissance à pleine tension (cela est d'ailleurs également valable pour le réchauffage de la bobine). ⇒ 🕮 A39 (ISO-H)

La mise hors tension se produit quant à elle côté courant continu. Un champ magnétique affaibli se dissipe plus rapidement qu'un champ à pleine puissance. Il en résulte que le frein s'enclenche plus rapidement avec un champ magnétique affaibli qu'avec un champ intégral.

Cette combinaison de commutation ne permet aucun déblocage accéléré par surexcitation!

Ce type de couplage ne doit pas être combiné avec un frein à réduction de bruit.

Neutralisation de l'effet de freinage (déblocage)

Neutralisation normale de l'effet de freinage

La neutralisation de l'effet de freinage a déjà été expliquée dans la section "Principe du courant de repos" (⇒ 🕮 B2).

Surexcitation par redresseur à action rapide (GPU, GPE2) par ex. tension réseau de 230 VCA et tension du frein de 105 VCC

Neutralisation accélérée de l'effet de freinage

Le redresseur à action rapide fonctionne brièvement en mode de redressement en pont (push).

Au niveau du frein se trouve donc temporairement la double valeur de sa tension assignée. La force d'attraction du disque d'armature par l'élément magnétique augmente considérablement en raison de la valeur double de la tension.

En conséquence, l'armature libère nettement plus vite le disque de frein et l'effet de freinage est neutralisé plus rapidement qu'avec une excitation normale.

Après le déblocage du frein, le redresseur à action rapide commute en redressement simple alternance. La tension assignée est alors appliquée aux bornes du frein.

Cette combinaison de commutation ne permet aucune activation accélérée de l'effet de freinage par sous-excitation!

Surtensions

Lors de la désactivation d'un frein, de hautes tensions peuvent apparaître. À cet effet, les contacts de commutation s'usent fortement. En outre, le frein risque d'être détérioré en raison de la haute tension.

Les redresseurs de NORD sont équipés d'un circuit de protection adapté. Les surtensions inadmissibles sont ainsi évitées.

D'autres circuits, notamment en cas d'alimentation des freins à partir d'une source de tension continue externe peuvent être équipés d'une protection supplémentaire. Veuillez nous consulter!

Caractéristiques techniques

Redresseur NORD	Caractéristiques techniques							
Pont redresseur	GVE20L/V	GVE20L/V						
Tension assignée	230V _{CA}							
Plage de tensions max. admissible	110V275V+10%	110V275V+10%						
Tension de sortie	$205V_{CC} \ (U_{CC} = U_{CA} \times 0.9)$							
Courant assigné jusqu'à 40°C	1,5 A							
Courant assigné jusqu'à 75°C	1,0 A							
Mise hors tension côté courant continu	Possible avec contact externe ou relais	de courant						
Redresseur simple alternance	GHE40L/V	GHE50L/V						
Tension assignée	480V _{CA}	575V _{CA}						
Plage de tensions max. admissible	230V480V+10%	230V575V+10%						
Tension de sortie	$216V_{CC} \ (U_{CC} = U_{CA} \times 0.45)$	$259V_{CC}$ ($U_{CC} = UAC \times 0.45$)						
Courant assigné jusqu'à 40°C	2,0 A	2,0 A						
Courant assigné jusqu'à 75°C *	1,0 A	1,0 A						
Mise hors tension côté courant continu	Possible avec contact externe ou relais de courant							
Redressement en pont brièvement puis redressement en simple alternance	GPU20L/V	GPU40L/V						
Tension assignée	230V _{CA}	480V _{CA}						
Plage de tensions max. admissible	200V275V+/-10%	330V480V+/-10%						
Tension de sortie	$104V_{CC} (U_{CC} = U_{CA} \times 0.45)$	$216V_{CC}$ ($U_{CC} = U_{CA} \times 0.45$)						
Courant assigné jusqu'à 40°C	0,7 A	0,7 A						
Courant assigné jusqu'à 75°C *	0,5 A	0,5 A						
Mise hors tension côté courant continu	A lieu automatiquement à l'intérieur ! De	ésactivation par le pont 3-4!						
Redressement en pont brièvement puis redressement en simple alternance	GPE20L/V	GPE40L/V						
Tension assignée	230V _{CA}	480V _{CA}						
Plage de tensions max. admissible	200275V+/-10%	330V480V+/-10%						
Tension de sortie	$104V_{CC}$ ($U_{CC} = U_{CA} \times 0.45$)	$216V_{CC}$ ($U_{CC} = U_{CA} \times 0.45$)						
Courant assigné jusqu'à 40°C	0,7 A	0,7 A						
Courant assigné jusqu'à 75°C *	0,5 A	0,5 A						
Mise hors tension côté courant continu	Possible avec contact externe ou relais de courant							

^{*} Normalement, le redresseur peut être installé dans la boîte à bornes du moteur.

En cas de haute sollicitation thermique ou de courants élevés, le redresseur doit être monté en dehors de la boîte à bornes, par ex. dans la boîte à bornes séparée sur le capot ventilateur ou dans l'armoire électrique.

Caractéristiques techniques

Tensions d'alimentation des freins

Les freins peuvent être livrés avec les tensions de bobines suivantes :

24VCC, 105VCC, 180VCC, 205VCC, 225VCC, 250VCC (les tensions privilégiées sont indiquées en caractères gras.)

Tension d'alimentation [V _{CA}]	Redresseur standard						
110 - 128	GVE20						
180 - 220		GVE20					
205 - 250			GVE20				
210 - 256	GHE40						
225 - 275				GVE20			
360 - 440		GHE40					
410 - 480			GHE40				
410 - 500			GHE50				
450 - 550				GHE50			
Tension de la bobine (frein) $[V_{cc}]$	105	180	205	225			

Tension d'alimentation $[V_{CA}]$	Déblocage rapide – Redresseur à action rapide						
200 - 256 (230)	GPU20 / GPE20						
380 - 440 (400)		GPU40 / GPE40					
380 - 480 (460)			GPU40 / GPE40				
450 - 480				GPU40 / GPE40			
Tension de la bobine (frein) $[V_{cc}]$	105	180	205	225			

Tension d'alimentation [V _{CA}]	Enclencheme	action rapide	
200 - 275 (200)	GPU20 / GPE20		
200 - 275 (230)		GPU20 / GPE20	
200 - 275 (250)			GPU20 / GPE20
Tension de la bobine (frein) [V _{cc}]	180	205	225

Les valeurs optimales sont indiquées en caractères gras.

Calcul des tailles de frein

Choix de la taille des freins

Les couples et moments d'inertie se rapportent à la vitesse de rotation du moteur.

Les couples côté sortie du réducteur doivent toujours être divisés par le rapport de réduction.

Les moments d'inertie côté sortie du réducteur doivent toujours être divisés par le carré du rapport de réduction.

1. Choix selon la charge statique (freins d'arrêt)

$$\mathrm{M_{requis}} = \mathrm{M_{stat}} = \mathrm{M_{charge}} \ \mathrm{x} \ \mathrm{K}$$

Dimensionnement selon la sollicitation statique et dynamique (freins de travail)

$$\Sigma J = J_{moteur} + \frac{J_{charge}}{i^2}$$

Des moments d'inertie supplémentaires (frein, réducteur) peuvent être négligés dans la plupart des cas.

$$M_{dyn} = \frac{\sum J \times n}{9.55 \times tr}$$

$$M_{requis} = (M_{dvn} \pm M_{charge}) \times K$$

avec charge poussante: utiliser M_{charge} positive! avec charge freinante: utiliser M_{charge} négative!

Vérification du travail de frottement maximal admissible

$$W = -\frac{J \; x \; n^2}{182,5} - x \; \frac{M_B}{M_B \pm M_{charge}} \Rightarrow \; W \leq W_{max} \; ! \label{eq:W}$$

avec charge poussante: utiliser M_{charge} négative! utiliser M_{charge} positive! avec charge freinante:

Définition des abréviations

Nombre de freinages par heure c/h

 $\Sigma J [kgm^2]$ Somme de tous les moments d'inertie entraînés, en rapport avec la vitesse de rotation du moteur

Rapport de réduction du réducteur

Κ Facteur de sécurité,

> en relation avec l'application ; choix correspondant aux réglementations de construction individuelles.

- Valeurs de référence : 0,8 à 3,0 - Mécanismes d'élévation : >2

- Mécanismes avec sécurité des personnes :

2...3 - Transmissions : 0,5...1,5

Couple produit par le frein [Nm]

Couple dynamique (couple de retard) M_{dvn} [Nm]

 M_{reguis} [Nm] =Couple de freinage requis

Couple de charge provenant de l'application Mcharge [Nm] =

M_{stat} [Nm] Couple statique (couple d'arrêt)

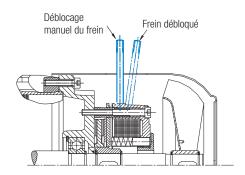
[min⁻¹] Vitesse du moteur n

Temps de glissement : temps pour que [sec] t,

l'entraînement s'arrête

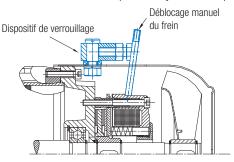
Travail de frottement par freinage [J]

 $\mathrm{W}_{\mathrm{max}}$ Travail de frottement maximum admissible par [J]


freinage

Options

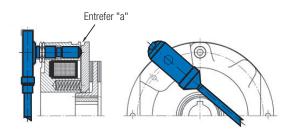
Déblocage manuel – HL ⇒ □ D19


Grâce au levier de déblocage manuel, le frein peut être débloqué manuellement (hors tension) sans démontage nécessaire.

Pour cela, le levier de déblocage est tiré dans le sens opposé à l'entrée de l'air. Le retour automatique du frein est assuré par les ressorts.

Déblocage manuel encliquetable du frein - FHL

Les freins (jusqu'à max. 250 Nm) avec déblocage manuel peuvent être maintenus en état débloqué au moyen d'un dispositif de verrouillage.


Micro-contact - MIK

Pour la surveillance électrique simple de la fonction de déblocage, les freins peuvent être livrés équipés de micro-contacts intégrés.

Si une surveillance de l'entrefer est requise ou souhaitable, un microcontact doit être installé. Lorsque le disque d'armature se trouve sur l'élément magnétique, le contacteur du moteur est commandé via le micro-contact.

Le moteur ne peut alors démarrer que si le frein a été débloqué. Si l'entrefer maximal "a" est atteint, la culasse magnétique n'attire plus le disque d'armature. Dans ce cas, le contacteur moteur n'est pas actionné, le moteur ne démarre pas. L'entrefer "a" doit être réajusté.

Un micro-contact pour la surveillance de l'usure est possible en option, veuillez nous consulter.

En option, il est possible d'effectuer le stockage temporaire des leviers à déblocage manuel dévissés dans une pince à ressort au niveau du carter du stator (option CL, ⇒ △ A21).

Déblocage manuel (HL) - Dimensions et forces

Taille de frein	Série du frein	Bras de levier [mm]	Force de déblocage [N]	Ouverture de clé [mm]	Filetage	Longueur du filetage [mm]	Angle de levage a
BRE 5	BR55PH, BR55PW	100	40	0	ME	7	
BRE 10	BR55PH, BR55PW	110	70	8	M5	7	
BRE 20	BR55PH, BR55PW	135	85	10	MC	0	
BRE 40	BR55PH, BR55PW	140	140	10	M6	9	
BRE 60	BR55PH, BR55PW	165	160				
BRE 100	BR55PH, BR55PW	22	250	12	M8	12	env. 10 %
BRE 150	BR55PH, BR55PW	250	320				
BRE 250	BR55PH, BR55PW	330	380				
BRE 400	BR55PH, BR55PW	357	330	19	M12	15	
BRE 800	BR55PH, BR55PW	357	330				
BRE 250	BR55MH, BR55MW	330	390				
BRE 400	BR55MH, BR55MW	357	360	-	M20	19	
BRE 800	BR55MH, BR55MW	357	360				

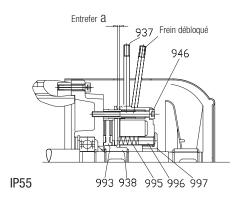
Protection contre la corrosion • Poussière • Saleté • Humidité – RG, SR

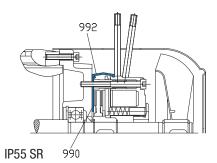
- 1) Flasque B vernis et disque de friction anti-corrosion option RG (seulement possible avec le degré de protection IP55)
- 2) Flasque B vernis et bague de protection anti-poussière option SR y compris disque de friction anti-corrosion (seulement possible avec le degré de protection IP55)
- 3) Degré de protection IP66, prendre en compte le degré de protection du moteur, veuillez nous consulter!
- 4) Degré de protection IP67 (frein à l'eau de mer), prendre en compte le degré de protection du moteur, veuillez nous consulter!

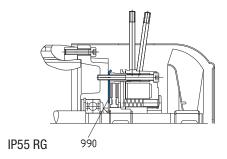
Vues en coupe

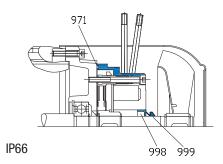
937	Déblocage manuel
000	C-4

938 Entraîneur946 Vis de fixation971 Joint torique

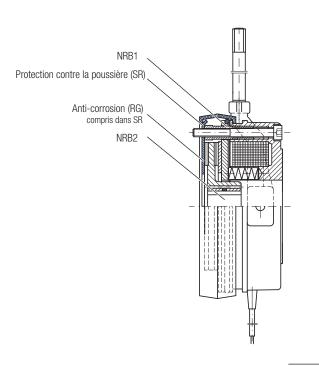

990 Tôle de friction


992 Bague de protection anti-poussière


993 Garniture de frein995 Ressort de pression


996 Dispositif d'écartement à ressort
997 Bague de réglage 5-40 Nm
998 Douille / lamelle d'étanchéité

999 Joint V


Frein avec réduction de bruit – NRB1

Pour réduire le niveau de bruit lors de la commutation, les freins peuvent être livrés avec un joint torique placé entre le disque d'armature et l'élément magnétique.

L'utilisation en combinaison avec des redresseurs à action rapide pour la sous-excitation n'est pas autorisée.

Frein avec réduction de bruit – NRB2

Les bruits produits par les oscillations lors du fonctionnement avec variateur ou sur les moteurs monophasés peuvent être réduits efficacement en plaçant des anneaux au niveau des entraîneurs.

Options

Relais de courant – IR

Activation accélérée de l'effet de freinage

Dans le cas d'un redresseur câblé directement aux bornes du moteur, le frein est activé par l'alimentation du moteur. Cela permet de faire l'économie d'une alimentation séparée pour le frein. Après la mise hors tension du moteur, le frein reste électriquement raccordé au moteur via le redresseur. Tant que le moteur n'est pas complètement immobilisé, il assure son rôle de générateur et continue d'alimenter le frein via le redresseur, ce qui retarde considérablement l'activation de l'effet de freinage.

Il en résulte un état de service inadapté, en particulier pour les engins de levage en mode de descente de la charge.

Le relais de courant doit ainsi être utilisé pour obtenir également de brefs temps d'enclenchement avec cette variante de commutation. Le relais de courant évalue le courant du moteur. En cas de mise hors tension du moteur, le relais de courant retombe également. Le frein est alors mis hors tension côté courant continu.

Cependant, des temps de réaction internes entraînent l'activation plus lente de l'effet de freinage que lors d'une mise hors tension normale côté courant continu.

Le relais de courant ne peut être utilisé qu'en combinaison avec les redresseurs GVE, GHE et GPE!

Caractéristiques techniques	Relais de courant (IR)				
Tension de commutation	42550 V _{cc}				
Courant de commutation	1,0 A _{cc}				
Courant primaire	25 A _{CA}	50 A _{CA}			
Courant primaire max.	75A (0,2 s)	150A (0,2 s)			
Courant de maintien	$<$ 0,7 A_{CA}	< 0,7 A _{CA}			
Température de service max.	-25 °C +90 °C	-25 °C +90 °C			

Résistance de préchauffage frein (BSH)

En cas de fortes variations de température, d'humidité de l'air élevée ou dans des conditions climatiques extrêmes, il est recommandé d'utiliser une résistance de préchauffage. Celle-ci empêche la formation d'humidité à l'intérieur du frein.

La résistance de préchauffage du frein ne doit pas être activée à moteur tournant ou guand le frein est électriguement alimenté!

Versions disponibles: 115 V; 230 V

Taille de frein	Puissance de chauffage [W] dans le cas de 115 V	Intensité [A] dans le cas de 115 V	Puissance de chauffage [W] dans le cas de 230 V	Intensité [A] dans le cas de 230 V	Série du frein	Marquage des bornes auxiliaires [EN 60034-8]
BRE 5	-	-	-	-	BR55PH, BR55PW	
BRE 10	14	0,12	16	0,07	BR55PH, BR55PW	
BRE 20	27	0,23	28	0,12	BR55PH, BR55PW	
BRE 40	33	0,29	33	0,14	BR55PH, BR55PW	
BRE 60	38	0,33	35	0,15	BR55PH, BR55PW	
BRE 100	56	0,49	47	0,20	BR55PH, BR55PW	
BRE 150	47	0,41	52	0,23	BR55PH, BR55PW	2 HE1 - 2HE2
BRE 250	53	0,46	70	0,30	BR55PH, BR55PW	
BRE 400	72	0,63	109,5	0,48	BR55PH, BR55PW	
BRE 800	-	-	-	-	BR55PH, BR55PW	
BRE 250	20	0,17	20	0,09	BR55MH, BR55MW	
BRE 400	30	0,26	30	0,13	BR55MH, BR55MW	
BRE 800	30	0,26	30	0,13	BR55MH, BR55MW	

Double frein pour utilisation au théâtre – DBR

Des combinaisons de 2 freins, par exemple pour des applications dans les théâtres dans une version avec réduction de bruit, peuvent également être livrées.

Pour la réduction des bruits de commutation (< 50 dB(A) en cas de mise hors tension côté courant alternatif), les freins sont munis d'un joint torique entre le disque d'armature et l'élément magnétique, pour les applications au théâtre.

Redondance:

les systèmes de technique de sécurité doivent être raccordés parallèlement afin que, lors d'une défaillance d'un composant, les autres puissent garantir le fonctionnement.

Selon DIN EN 17206, le frein doit supporter au moins 1,25 fois la charge de test. Il est recommandé de prévoir un frein ayant au minimum 1,6 fois et au maximum 2,0 fois le couple de charge.

Les tensions de bobines correspondent aux valeurs indiquées dans le catalogue. Pour le double frein, deux redresseurs sont nécessaires. Une combinaison avec l'abaissement de tension n'est pas possible.

Remarque:

il est recommandé de ne pas bloquer les freins en même temps car les couples de freinage risqueraient alors de s'accumuler, ce qui endommagerait le réducteur et l'installation. Le réducteur doit être déterminé pour supporter un couple de freinage complet des deux freins en cas d'arrêt de secours ou chute de tension!

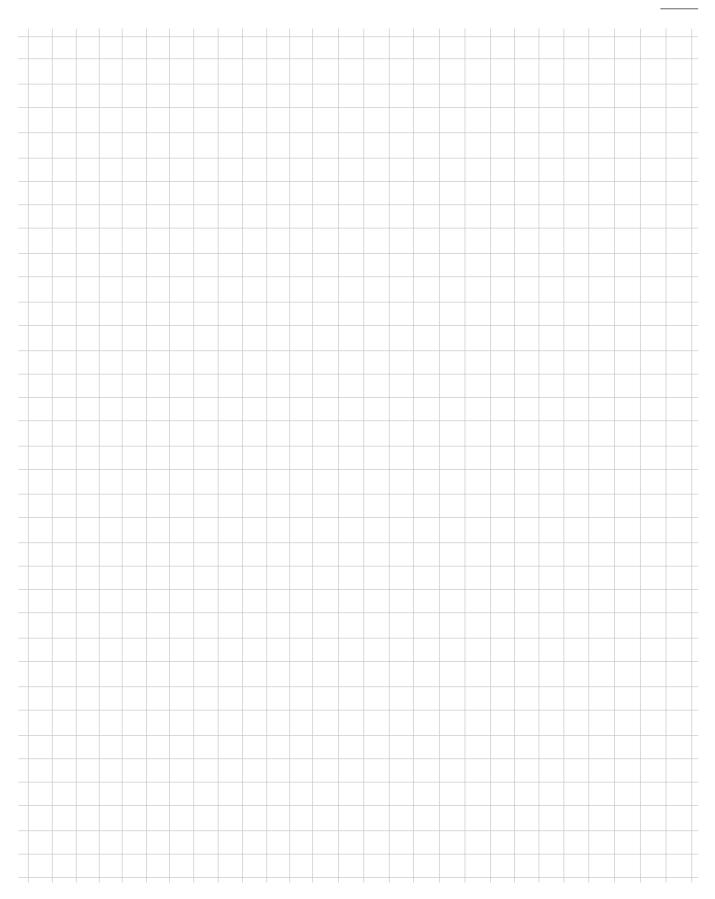
♣ Pour éviter un endommagement du frein pour théâtre, un micro-contact (MIK) est recommandé en option ⇒ ☐ B12.

Options

Doubles freins: 6 - 500 Nm IP55

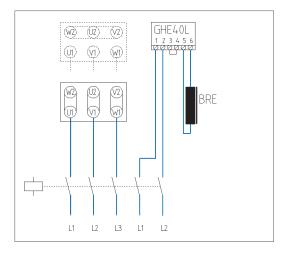
							I	Double frein				
				DBR 6	DBR 12	DBR 25	DBR 50	DBR 75	DBR 125	DBR 187	DBR 300	DBR 500
	IE1	IE2	IE3					M _B [Nm]				
63	S/L	-	SP/LP	6								
71	S/L	-	SP/LP	6								
80 80	S L	SH LH	SP LP	6 6	12 12							
90 90	S L	SH LH	SP LP		12 12	25 25						
100 100	L LA	LH AH	LP AP			25 25	50 50					
112 112	M -	SH MH	- MP				50 50	75 75				
132 132 132	S M MA	SH MH LH	SP MP					75 75 75	125 125 125	187 187 187 ²⁾		
160 160 160	- M L	SH MH LH	SP MP LP						125 125 125	187 187 187	300 300 300	
180 180 180 180	MX LX -	- - MH LH	- MP LP							187 187 187 187	300 300 300 300	
200	LX	XH	-							187	300	500 2)
225 225	-	SH MH	RP/SP MP								300 300	500 500
250	-	WH	WP								300	500
Série	du freir	1						DB55PH				
Poids	[kg]			3	5	8	12	18	24	36	50	80
J [10	J [10 ⁻³ kgm ²]			2 x 0,015	2 x 0,045	2 x 0,173	2 x 0,45	2 x 0,86	2 x 1,22	2 x 2,85	2 x 6,65	2 x 19,5

Couples de freinage en caractères gras : version standard


2) L'option HL en combinaison avec le capot ventilateur n'est pas possible !

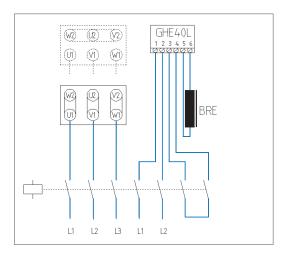
	Réduction des couples de freinage														
Nombre de ressorts par	DBR 6	DBR 12	DBR 25	DBR 50	DBR 75	DBR 125	DBR 187	Nombre de ressorts par	DBR 300	DBR 500					
bloc-ressort			bloc-ressort	M _B [Nm]											
7	2 x 6	2 x 12	2 x 25	2 x 50	2 x 75	2 x 125	2 x 187	8	2 x 300	2 x 500					
5	2 x 4	2 x 8,5	2 x 17,5	2 x 35	2 x 52	2 x 89	2 x 132	6	2 x 225	2 x 375					
4	2 x 3,5	2 x 7	2 x 14	2 x 28	2 x 42	2 x 70	2 x 107	4	2 x 150	2 x 250					

Couples de freinage en caractères gras : version standard

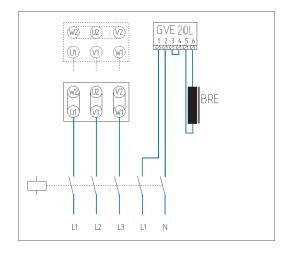

Variantes de couplage

Variantes de couplage des motofreins (exemples)

La sélection suivante présente les variantes de couplage les plus fréquentes pour les moteurs freins mono-vitesse.

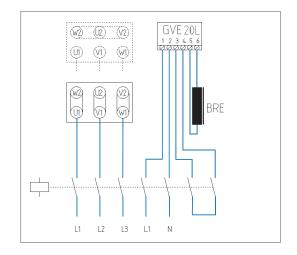

Le choix de la combinaison correcte du redresseur et de la tension de bobine du frein doit correspondre à la tension d'alimentation disponible, indiquée dans le ⇒ 🚇 tableau B10.

coupure : côté courant alternatif



3. couplage Y moteur : $400V_{CA}$ ou bien couplage Y : $400V_{CA}$ redresseur simple alternance : GHE40L alimentation séparée : $400V_{CA}$ frein : $180V_{CC}$

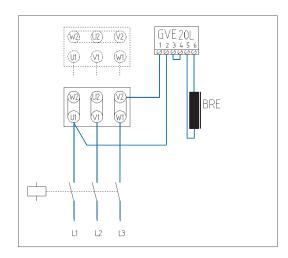
coupure : côté courant continu



coupure : côté courant alternatif

 $\begin{array}{lll} \text{4.} & \text{couplage Y moteur:} & \text{400V}_{\text{CA}} \\ & \text{ou bien couplage Y:} & \text{400V}_{\text{CA}} \\ & \text{pont redresseur:} & \text{GVE20L} \\ & \text{alimentation séparée:} & \text{230V}_{\text{CA}} \\ & \text{frein:} & \text{205V}_{\text{CC}} \end{array}$

coupure: côté courant continu

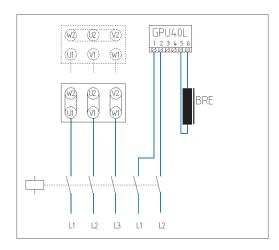

5. couplage Δ moteur : 230V_{CA} ou bien couplage Y : 400V_{CA} pont redresseur : GVE20L

alimentation par les

bornes du moteur : $230V_{CA}$ frein : $205V_{CC}$

coupure : côté courant alternatif

Le frein se bloque très lentement!


7. couplage Δ moteur : $400V_{CA}$ ou bien couplage Y : $400V_{CA}$

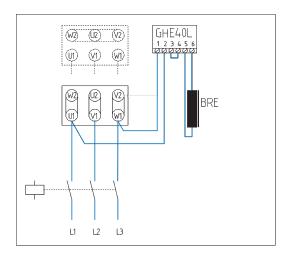
redresseur à action

 $\begin{array}{ll} \text{instantan\'ee}: & \text{GPU40L} \\ \text{frein}: & 180\text{V}_{\text{CC}} \\ \text{alimentation s\'epar\'ee}: & 400\text{V}_{\text{CA}} \end{array}$

coupure: côté courant continu, interne

Variante de commutation pour un déblocage rapide

Typique pour le fonctionnement VF

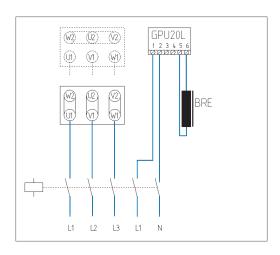

6. couplage Δ moteur : $400V_{CA}$ ou bien couplage Y : $400V_{CA}$ redresseur simple alternance : GHE40L

alimentation par les

bornes du moteur : $400V_{CA}$ frein : $180V_{CC}$

coupure: côté courant alternatif

Le frein se bloque très lentement!


8. couplage Δ moteur : $400V_{CA}$ ou bien couplage Y : $400V_{CA}$

redresseur à action

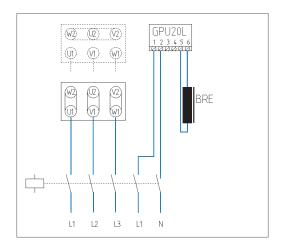
 $\begin{array}{ll} \text{instantanée}: & \text{GPU2OL} \\ \text{frein}: & 105\text{V}_{\text{CC}} \\ \text{alimentation séparée}: & 230\text{V}_{\text{CA}} \end{array}$

coupure : côté courant continu, interne

Variante de commutation pour un déblocage rapide

Typique pour le fonctionnement VF

Variantes de couplage


9. couplage Δ moteur : $400V_{CA}$ ou bien couplage Y : $400V_{CA}$

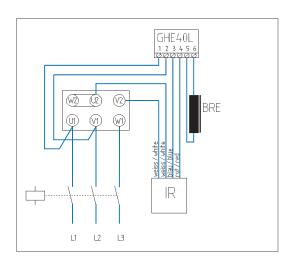
redresseur à action

 $\begin{array}{ll} \text{instantanée}: & \text{GPU20L} \\ \text{frein}: & 205V_{\text{CC}} \\ \text{alimentation séparée}: & 230V_{\text{CA}} \end{array}$

coupure: côté courant continu, interne

Variante de commutation pour un blocage rapide

 $\begin{array}{ll} \text{11. couplage Y moteur:} & \text{400V}_{\text{CA}} \\ \text{redresseur simple alternance:} & \text{GHE40L} \\ \text{frein:} & \text{180V}_{\text{CC}} \end{array}$


alimentation par les

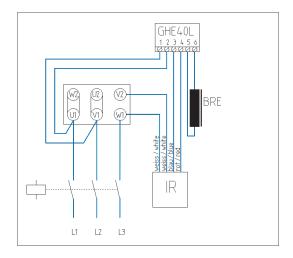
bornes du moteur : 400V_{CA}

coupure : côté courant continu par le

relais de courant

Variante de commutation pour un blocage rapide

10. couplage Δ moteur : 400V_{CA} redresseur simple alternance : GHE40L frein : 180V_{CC}


alimentation par les

bornes du moteur : 400V_{CA}

coupure : côté courant continu par le

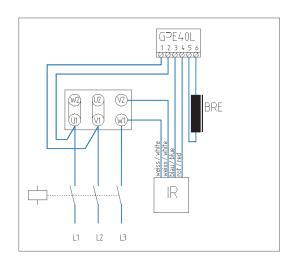
relais de courant

Variante de commutation pour un blocage rapide

12. couplage Δ moteur : $400V_{CA}$

redresseur à action

 $\begin{array}{ll} \text{instantan\'ee}: & \text{GPE40L} \\ \text{frein}: & 180 \text{V}_{\text{CC}} \end{array}$


alimentation par les

bornes du moteur : $$400\ensuremath{V_{\text{CA}}}$$

coupure : côté courant continu par le

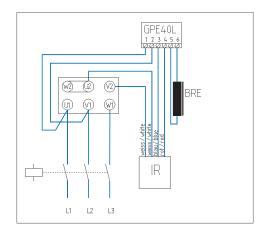
relais de courant

Variante de commutation pour un déblocage et blocage rapide

13. couplage Y moteur : $400V_{CA}$

redresseur à action

 $\begin{array}{ll} \text{instantan\'ee}: & \text{GPE40L} \\ \text{frein}: & 180\text{V}_{\text{CC}} \end{array}$

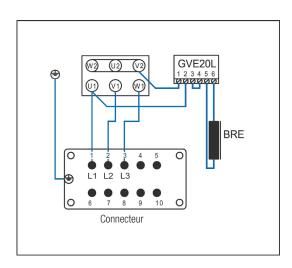

alimentation par les

bornes du moteur : 400V_{CA}

coupure : côté courant continu par le

relais de courant

Variante de commutation pour un déblocage et blocage rapide


 $\begin{array}{lll} \text{15. couplage Y moteur}: & \text{400V}_{\text{CA}} \\ & \text{pont redresseur}: & \text{GVE20L} \\ & \text{frein}: & \text{205V}_{\text{CC}} \end{array}$

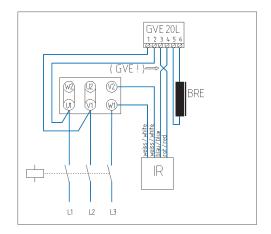
alimentation par les

bornes du moteur : 230V_{CA}

coupure : côté courant alternatif

Variante de commutation pour le raccordement via le connecteur enfichable moteur (MS)

 $\begin{array}{lll} \mbox{14. couplage Δ moteur:} & 230\mbox{V}_{\text{CA}} \\ \mbox{pont redresseur:} & \mbox{GVE20L} \\ \mbox{frein:} & 205\mbox{V}_{\text{CC}} \end{array}$

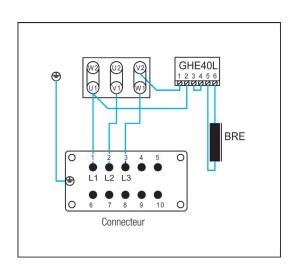

alimentation par les

bornes du moteur : 230V_{CA}

coupure : côté courant continu par le

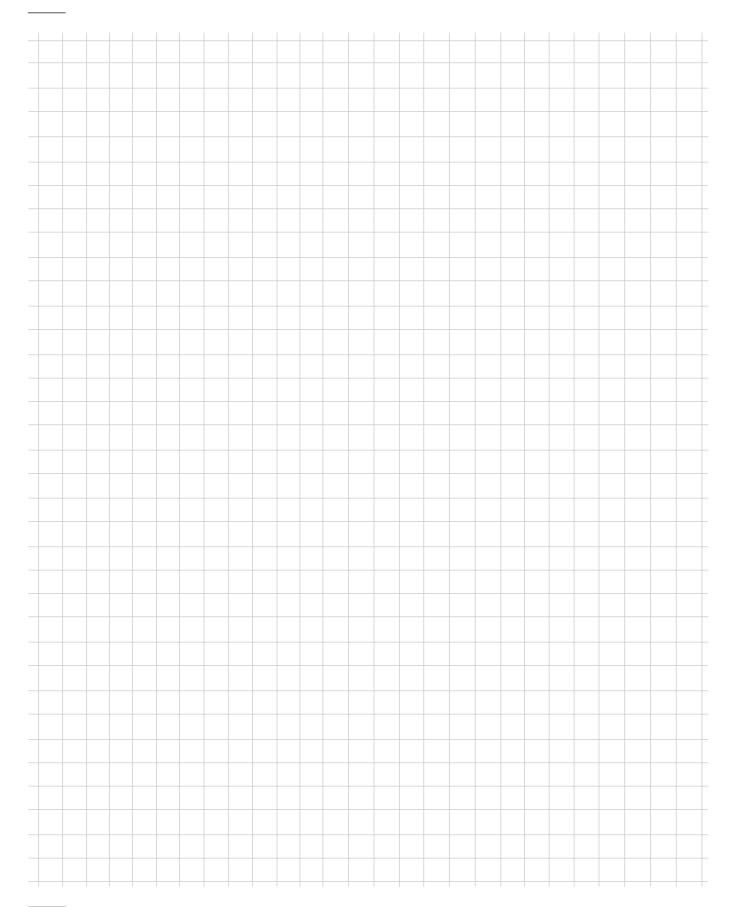
relais de courant

Variante de commutation pour un blocage rapide. Tenir compte du raccordement IR sur le redresseur !


16. couplage Δ moteur : 400V_{CA} redresseur simple alternance : GHE40L frein : 180V_{CC}

alimentation par les

bornes du moteur : 400V_{CA}


coupure : côté courant alternatif

Variante de commutation pour le raccordement via le connecteur enfichable moteur (MS)

Notes

Données moteur

IE3	C 2-17
Standard + IE1	C 18 - 22

1500 r/min 50 Hz	n 230/400 V 4 pôles	
	IE3 S1	

		S1 S1													
		P_{N}	n _N	M _N	I _N	I	cos φ		η		M _A /M _N	M _K /M _N	I _A /I _N	J	kg
Ту	pes				230 V	400 V	4/4xP _N	1/2xP _N	3/4xP _N	4/4xP _N					*
		[kW]	[r/min]	[Nm]	[A]	[A]		[%]	[%]	[%]				[kgm²]	[kg]
63	SP/4	0,12	1370	0,84	0,68	0,39	0,66	58,3	64,7	66,4	2,7	2,6	3,3	0,00024	3,80
63	LP/4	0,18	1385	1,24	1,02	0,59	0,62	62,2	65,6	69,9	3,3	3,1	3,6	0,00033	4,70
71	SP/4	0,25	1415	1,69	1,21	0,70	0,71	68,2	73,0	73,5	3,2	3,2	4,9	0,00086	6,10
71	LP/4	0,37	1405	2,51	1,58	0,91	0,76	72,8	76,7	77,3	2,8	2,8	5,0	0,00110	7,20
80	SP/4	0,55	1420	3,70	2,23	1,29	0,75	79,5	81,8	81,4	2,6	2,8	5,1	0,00145	9,70
80	LP/4	0,75	1415	5,06	3,10	1,79	0,72	83,7	84,7	83,7	3,0	3,1	5,4	0,0019	10,2
90	SP/4	1,10	1430	7,35	4,12	2,38	0,78	84,7	86,0	85,3	3,6	4,0	6,8	0,0034	15,1
90	LP/4	1,50	1415	10,1	5,59	3,23	0,79	86,6	86,3	85,3	3,3	3,5	5,9	0,0039	16,8
100	LP/4**	2,20	1460	14,4	8,13	4,68	0,76	87,3	88,3	87,9	3,6	4,2	7,9	0,0074	24,5
100	AP/4 **	3,00	1450	19,8	10,9	6,26	0,80	88,2	88,6	87,7	3,2	3,6	7,0	0,0086	27,4
112	MP/4	4,00	1440	26,5	13,6	7,85	0,83	88,9	89,2	88,6	3,3	3,5	7,4	0,014	35,5
132	SP/4	5,50	1465	35,8	18,9	10,9	0,80	90,6	91,5	90,9	3,9	4,1	8,6	0,032	55,0
132	MP/4	7,50	1460	49,0	27,3	15,7	0,77	90,2	90,5	90,4	3,9	4,2	7,5	0,035	62,0
160	SP/4	9,20	1470	59,8	29,0	16,7	0,88	90,4	91,1	91,0	2,9	3,3	8,1	0,067	93,0
160	MP/4	11,0	1465	71,7	35,5	20,5	0,85	91,6	92,0	91,4	2,9	3,4	7,4	0,067	93,0
160	LP/4	15,0	1465	97,8	48,3	27,9	0,85	92,3	92,8	92,3	3,8	4,3	9,1	0,092	122
180	MP/4	18,5	1480	119	58,9	34,0	0,84	92,4	93,1	93,1	3,4	3,8	9,2	0,16	155
180	LP/4	22,0	1475	142	68,1	39,3	0,87	93,2	93,5	93,1	2,8	3,2	8,0	0,16	155
225	RP/4	30,0	1485	193	97,3	56,2	0,82	93,6	94,3	94,1	3,0	3,4	7,8	0,49	315
225	SP/4	37,0	1485	238	118	68,2	0,83	93,6	94,4	94,1	2,9	3,2	7,7	0,54	330
225	MP/4	45,0	1485	289	142	81,7	0,83	94,6	94,9	94,6	3,0	3,4	8,0	0,67	365
250	WP/4	55,0	1480	355	166	96,1	0,87	95,2	95,0	94,6	2,6	2,8	7,0	0,82	400

^{*} Position de montage B5, sans options** Série APAB

		31													
		P_N	n _N	M _N			cos φ		η		M _A /M _N	M _K /M _N	I_A/I_N	J	kg
Ту	pes				400 V	690 V	4/4xP _N	1/2xP _N	3/4xP _N	4/4xP _N					*
		[kW]	[r/min]	[Nm]	[A]	[A]		[%]	[%]	[%]				[kgm²]	[kg]
63	SP/4	0,12	1370	0,84	0,39	0,23	0,66	59,0	64,6	65,6	2,7	2,6	3,30	0,00024	3,80
63	LP/4	0,18	1375	1,25	0,55	0,32	0,66	65,6	70,1	70,4	3,5	3,4	3,62	0,00033	4,70
71	SP/4	0,25	1415	1,69	0,71	0,41	0,68	68,2	73,0	73,5	3,1	3,1	4,94	0,00086	6,10
71	LP/4	0,37	1405	2,51	0,92	0,53	0,76	72,8	76,7	77,3	2,8	2,8	4,98	0,00110	7,20
80	SP/4	0,55	1420	3,70	1,29	0,74	0,75	79,5	81,8	81,4	2,6	2,8	5,09	0,00145	9,70
80	LP/4	0,75	1415	5,06	1,79	1,03	0,72	83,7	84,7	83,7	2,9	3,1	5,30	0,0019	10,2
90	SP/4	1,10	1430	7,35	2,38	1,37	0,78	84,7	86,0	85,3	3,6	4,0	6,80	0,0034	15,1
90	LP/4	1,50	1415	10,1	3,23	1,86	0,79	86,6	86,3	85,3	3,3	3,5	5,90	0,0039	16,8
100	LP/4**	2,20	1460	14,4	4,68	2,71	0,76	87,3	88,3	87,9	3,6	4,2	7,90	0,0074	24,5
100	AP/4 **	3,00	1450	19,8	6,26	3,63	0,80	88,2	88,6	87,7	3,2	3,6	7,00	0,0086	27,4
112	MP/4	4,00	1440	26,5	7,85	4,53	0,83	88,9	89,2	88,6	3,4	3,6	7,50	0,014	35,5
132	SP/4	5,50	1465	35,8	10,9	6,29	0,80	90,6	91,5	90,9	3,9	4,1	8,60	0,032	55,0
132	MP/4	7,50	1460	49,0	15,7	9,10	0,77	90,2	90,5	90,4	3,9	4,2	7,50	0,035	62,0
160	SP/4	9,20	1470	59,8	16,7	9,65	0,88	90,4	91,1	91,0	2,9	3,3	8,10	0,067	93,0
160	MP/4	11,0	1465	71,7	20,5	11,8	0,85	91,6	92,0	91,4	2,9	3,4	7,40	0,067	93,0
160	LP/4	15,0	1465	97,8	27,9	16,1	0,85	92,3	92,8	92,3	3,8	4,3	9,10	0,092	122
180	MP/4	18,5	1480	119	34,0	19,6	0,84	92,4	93,1	93,1	3,4	3,8	9,20	0,16	155
180	LP/4	22,0	1475	142	39,3	22,7	0,87	93,2	93,5	93,1	2,8	3,2	8,00	0,16	155
225	RP/4	30,0	1485	193	56,2	32,4	0,82	93,6	94,3	94,1	3,0	3,4	7,79	0,49	315
225	SP/4	37,0	1485	238	68,2	39,8	0,83	93,6	94,4	94,1	2,9	3,2	7,67	0,54	330
225	MP/4	45,0	1485	289	81,7	47,2	0,83	94,6	94,9	94,6	3,0	3,4	8,02	0,67	365
250	WP/4	55,0	1480	355	96,1	55,5	0,87	95,2	95,0	94,6	2,6	2,8	7,04	0,82	400

^{*} Position de montage B5, sans options

^{**} Série APAB

		S1													
		P _N	n _N	M _N	I	N	cos φ		η		M _A /M _N	M _K /M _N	I _A /I _N	J	kg
Ту	pes				220 V	380 V	4/4xP _N	1/2xP _N	3/4xP _N	4/4xP _N					*
		[kW]	[r/min]	[Nm]	[A]	[A]		[%]	[%]	[%]				[kgm²]	[kg]
63	SP/4	0,12	1.390	0,82	0,8	0,46	0,6	55,1	62	64,8	3,1	2,9	3,6	0,00024	3,8
63	LP/4	0,18	1.385	1,24	1,07	0,62	0,62	62,2	65,6	69,9	3,3	3,1	3,6	0,00033	4,7
71	SP/4	0,25	1.415	1,69	1,28	0,74	0,71	68,2	73	74,3	3,2	3,2	4,9	0,00086	6,1
71	LP/4	0,37	1.405	2,51	1,66	0,96	0,76	72,8	76,7	77,3	2,8	2,8	5,0	0,0011	7,2
80	SP/4	0,55	1.420	3,70	2,36	1,36	0,75	79,5	81,8	81,4	2,6	2,8	5,1	0,00145	9,7
80	LP/4	0,75	1.415	5,06	3,24	1,87	0,72	83,7	84,7	83,7	3,0	3,1	5,4	0,0019	10,2
90	SP/4	1,1	1.430	7,35	4,35	2,51	0,78	84,7	86	85,3	3,7	4,1	6,9	0,0034	15,1
90	LP/4	1,5	1.415	10,12	5,89	3,4	0,79	86,6	86,3	85,3	3,3	3,5	5,9	0,0039	16,8
100	LP/4	2,2	1.465	14,34	7,79	4,5	0,83	88,7	89,6	88,1	2,7	4,0	8,4	0,0081	24,5
100	AP/4	3	1.460	19,62	11	6,35	0,81	88,4	88,8	88,1	2,4	3,6	7,3	0,0081	28,0
112	MP/4	4	1.440	26,53	14,3	8,26	0,83	88,9	89,2	88,6	3,3	3,5	7,3	0,014	35,5
132	SP/4	5,5	1.465	35,85	19,9	11,5	0,8	90,6	91,5	90,9	3,9	4,1	8,6	0,032	55,0
132	MP/4	7,5	1.460	49,06	28,6	16,5	0,77	90,2	90,5	90,4	3,9	4,2	7,5	0,035	62,0
160	SP/4	9,2	1.470	59,77	30,4	17,6	0,88	90,4	91,1	91	2,9	3,3	8,1	0,067	93,0
160	MP/4	11	1.465	71,71	37,4	21,6	0,85	91,6	92	91,4	2,9	3,4	7,4	0,067	93,0
160	LP/4	15	1.465	97,78	50,9	29,4	0,85	92,3	92,8	92,3	3,8	4,4	9,3	0,092	122
180	MP/4	18,5	1.480	119,38	62	35,8	0,84	92,4	93,1	93,1	3,4	3,8	9,2	0,16	155
180	LP/4	22	1.475	142,44	72,4	41,8	0,86	93,2	93,5	93,1	3,0	3,3	8,2	0,16	155
225	RP/4	30	1.485	192,93	102,2	59	0,82	93,6	94,3	94,1	3,0	3,4	7,8	0,49	315
225	SP/4	37	1.485	237,95	128,05	73,93	0,83	93,6	94,4	94,1	3,0	3,4	7,7	0,54	330
225	MP/4	45	1.485	289,39	147,21	84,99	0,86	0	0	94,5	2,7	3,0	7,3	0,67	365
250	WP/4	55	1.475	356,10	176,5	101,9	0,88	0	0	94,3	2,3	2,5	6,3	0,82	400

^{*} Position de montage B5, sans options

1500 r/min 50 Hz

380/660 V 4 pôles

IE3 S1

		51													
		P _N	n _N	M _N			cos φ		η		M _A /M _N	M _K /M _N	I _A /I _N	J	kg
Ту	pes				400 V	690 V	4/4xP _N	1/2xP _N	3/4xP _N	4/4xP _N					*
		[kW]	[r/min]	[Nm]	[A]	[A]		[%]	[%]	[%]				[kgm²]	[kg]
63	SP/4	0,12	1350	0,85	0,41	0,24	0,74	0,0	0,0	65,8	2,4	2,3	3,0	0,00024	3,80
63	LP/4	0,18	1370	1,25	0,58	0,33	0,71	0,0	0,0	65,7	2,9	2,8	3,5	0,00033	4,70
71	SP/4	0,25	1405	1,70	0,71	0,41	0,75	0,0	0,0	74,5	2,9	2,8	4,6	0,00086	6,10
71	LP/4	0,37	1390	2,54	0,95	0,55	0,81	0,0	0,0	77,0	2,5	2,5	4,5	0,00110	7,20
80	SP/4	0,55	1405	3,74	1,37	0,79	0,79	0,0	0,0	80,6	2,4	2,5	4,6	0,00145	9,70
80	LP/4	0,75	1405	5,10	1,87	1,08	0,79	0,0	0,0	83,7	2,7	2,8	4,9	0,0019	10,2
90	SP/4	1,10	1420	7,40	2,45	1,41	0,81	0,0	0,0	85,3	3,2	3,6	6,3	0,0034	15,1
90	LP/4	1,50	1405	10,2	3,45	1,99	0,80	0,0	0,0	84,4	2,9	3,1	5,4	0,0039	16,8
100	LP/4	2,20	1460	14,4	4,54	2,62	0,83	0,0	0,0	87,9	3,3	3,8	7,4	0,0074	24,5
100	AP/4	3,00	1445	19,8	6,21	3,59	0,83	0,0	0,0	87,7	2,8	3,1	6,4	0,0086	28,0
112	MP/4	4,00	1430	26,7	8,42	4,86	0,82	0,0	0,0	88,1	3,0	3,1	6,6	0,014	35,5
132	SP/4	5,50	1460	36,0	11,4	6,56	0,83	0,0	0,0	90,8	3,5	3,7	7,8	0,032	55,0
132	MP/4	7,50	1455	49,2	15,9	9,15	0,82	0,0	0,0	90,1	3,5	3,8	7,1	0,035	62,0
160	SP/4	9,20	1465	60,0	17,4	10,0	0,86	0,0	0,0	91,0	2,6	3,0	7,0	0,067	93,0
160	MP/4	11,0	1460	71,9	21,5	12,4	0,88	0,0	0,0	91,4	2,6	3,0	6,7	0,067	93,0
160	LP/4	15,0	1460	98,1	28,8	16,6	0,87	0,0	0,0	92,0	3,4	3,8	8,4	0,092	122
180	MP/4	18,5	1475	120	35,0	20	0,85	0,0	0,0	93,1	3,0	3,4	8,5	0,16	155
180	LP/4	22,0	1470	143	41,5	24,0	0,87	0,0	0,0	92,8	2,6	2,9	7,2	0,16	155
225	RP/4	30,0	1485	193	57,9	33,4	0,85	0,0	0,0	94,0	2,7	3,1	7,2	0,49	315
225	SP/4	37,0	1485	238	70,7	40,8	0,85	0,0	0,0	93,9	2,6	2,9	7,0	0,54	330
225	MP/4	45,0	1485	289	147	85,0	0,86	0,0	0,0	94,5	2,7	3,0	7,3	0,67	365
250	WP/4	55,0	1475	356	102	58,8	0,88	0,0	0,0	94,3	2,3	2,5	6,3	0,82	400

^{*} Position de montage B5, sans options

1800 60 H) r/min Iz		265/460 V 4 pôles													
		IE3 S1														
		P_N	n _N	$M_{_{\mathrm{N}}}$	I	N	cos φ		η		M _A /M _N	M_{K}/M_{N}	I _A /I _N	J	kg	
Ту	pes				265 V	460 V	4/4xP _N	1/2xP _N	3/4xP _N	4/4xP _N					*	
		[kW]	[r/min]	[Nm]	[A]	[A]		[%]	[%]	[%]				[kgm²]	[kg]	
63	SP/4	0,12	1695	0,68	0,62	0,36	0,62	58,9	65,9	68,5	3,40	3,30	4,00	0,00024	3,80	
63	LP/4	0,18	1705	1,01	0,94	0,54	0,57	63,6	70,2	72,3	4,10	3,90	4,30	0,00033	4,70	
71	SP/4	0,25	1725	1,38	1,09	0,63	0,67	67,7	74,3	73,5	3,70	3,90	5,90	0,00086	6,10	
71	LP/4	0,37	1725	2,05	1,40	0,81	0,72	73,2	78,0	78,2	3,30	3,60	6,10	0,00110	7,20	
80	SP/4	0,55	1735	3,03	1,99	1,15	0,72	79,8	82,7	83,4	2,80	3,40	6,10	0,00145	9,70	
80	LP/4	0,75	1730	4,14	2,72	1,57	0,70	84,4	86,1	86,1	3,40	3,80	6,50	0,0019	10,2	
90	SP/4	1,10	1740	6,04	3,64	2,10	0,76	86,3	87,4	86,9	4,20	4,90	8,40	0,0034	15,1	
90	LP/4	1,50	1730	8,28	4,85	2,80	0,78	86,3	87,4	87,0	3,90	4,30	7,60	0,0039	16,8	
100	LP/4**	2,20	1765	11,9	7,13	4,11	0,75	87,7	89,3	89,5	3,80	5,00	9,60	0,0074	24,5	
100	AP/4**	3,00	1760	16,3	9,42	5,43	0,79	88,7	89,7	89,5	3,60	4,48	8,75	0,0086	27,4	
112	MP/4	4,00	1750	21,8	11,9	6,84	0,82	89,2	90,4	90,2	3,70	4,30	9,00	0,014	35,5	
132	SP/4	5,50	1770	29,7	16,9	9,75	0,77	90,2	91,5	91,7	4,70	5,00	10,2	0,032	55,0	
132	MP/4	7,50	1765	40,6	23,2	13,4	0,77	90,7	91,6	91,7	4,70	5,00	9,60	0,035	62,0	
160	SP/4	9,20	1775	49,5	25,5	14,7	0,87	90,0	91,4	91,7	3,20	3,70	8,80	0,067	93,0	
160	MP/4	11,0	1770	59,3	30,8	17,8	0,84	91,2	92,5	92,5	3,20	3,80	8,80	0,067	93,0	
160	LP/4	15,0	1775	80,7	41,2	23,8	0,85	90,9	92,3	93,0	4,30	4,70	10,8	0,092	122	
180	MP/4	18,5	1780	99,2	52,5	30,3	0,82	92,5	93,4	93,6	3,90	4,00	10,1	0,16	155	
180	LP/4	22,0	1780	118	60,3	34,8	0,85	93,6	94,0	93,6	3,30	3,40	8,80	0,16	155	
225	RP/4	30,0	1785	160	85,7	49,5	0,81	93,4	94,4	94,5	3,40	3,80	8,90	0,49	315	
225	SP/4	37,0	1785	198	103	59,7	0,82	93,6	94,5	94,6	3,00	3,70	8,80	0,54	330	
225	MP/4	45,0	1785	241	125	72,0	0,83	94,6	95,2	95,2	3,30	3,60	9,10	0,67	365	
250	WP/4	55,0	1785	294	146	84,4	0,86	95,2	94,5	95,4	2,90	3,20	8,20	0,82	400	

^{*} Position de montage B5, sans options

^{**} Série APAB

1800 60 Hz						460 V 4 pôlo								
		IE3 S1												
		P_{N}	n _N	M_{N}		cos φ		η		M_A/M_N	$M_{\rm K}/M_{\rm N}$	I_A/I_N	J	kg
Ту	pes				460 V	4/4xP _N	1/2xP _N	3/4xP _N	4/4xP _N					*
		[kW]	[r/min]	[Nm]	[A]		[%]	[%]	[%]				[kgm²]	[kg]
63	SP/4	0,12	1695	0,68	0,36	0,62	58,8	65,8	68,5	3,40	3,30	4,00	0,00024	3,80
63	LP/4	0,18	1695	1,01	0,51	0,60	63,6	70,2	72,3	4,40	4,20	4,30	0,00033	4,70
71	SP/4	0,25	1730	1,38	0,65	0,65	67,7	74,3	73,5	3,60	3,80	5,90	0,00086	6,10
71	LP/4	0,37	1725	2,05	0,81	0,72	73,2	78,0	78,2	3,30	3,60	6,10	0,00110	7,20
80	SP/4	0,55	1735	3,03	1,15	0,72	79,8	82,7	83,4	2,80	3,40	6,10	0,00145	9,70
80	LP/4	0,75	1730	4,14	1,57	0,70	84,4	86,1	86,1	3,40	3,70	6,40	0,0019	10,2
90	SP/4	1,10	1740	6,04	2,10	0,76	86,3	87,4	86,9	4,20	4,90	8,40	0,0034	15,1
90	LP/4	1,50	1730	8,28	2,80	0,78	86,3	87,4	87,0	3,90	4,30	7,60	0,0039	16,8
100	LP/4**	2,20	1765	11,9	4,11	0,75	87,7	89,3	89,5	3,80	5,00	9,60	0,0074	24,5
100	AP/4**	3,00	1760	16,3	5,43	0,79	88,7	89,7	89,5	3,60	4,48	8,75	0,0086	27,4
112	MP/4	4,00	1750	21,8	6,85	0,82	89,2	90,4	90,2	3,80	4,30	9,10	0,014	35,5
132	SP/4	5,50	1770	29,7	9,75	0,77	90,2	91,5	91,7	4,70	5,00	10,2	0,032	55,0
132	MP/4	7,50	1765	40,6	13,4	0,77	90,7	91,6	91,7	4,70	5,00	9,60	0,035	62,0
160	SP/4	9,20	1775	49,5	14,7	0,87	90,0	91,4	91,7	3,20	3,70	8,80	0,067	93,0
160	MP/4	11,0	1770	59,3	17,8	0,84	91,2	92,5	92,5	3,20	3,80	8,80	0,067	93,0
160	LP/4	15,0	1775	80,7	23,8	0,85	90,9	92,3	93,0	4,30	4,70	10,8	0,092	122
180	MP/4	18,5	1780	99,2	30,3	0,82	92,5	93,4	93,6	3,90	4,00	10,1	0,16	155
180	LP/4	22,0	1780	118	34,8	0,85	93,6	94,0	93,6	3,30	3,40	8,80	0,16	155
225	RP/4	30,0	1785	160	49,5	0,81	93,4	94,4	94,5	3,40	3,80	8,90	0,49	315
225	SP/4	37,0	1785	198	59,7	0,82	93,6	94,5	94,6	3,00	3,70	8,80	0,54	330
225	MP/4	45,0	1785	241	72,0	0,83	94,6	95,2	95,2	3,30	3,60	9,10	0,67	365
250	WP/4	55,0	1785	294	84,4	0,86	95,2	94,5	95,4	2,90	3,20	8,20	0,82	400

^{*} Position de montage B5, sans options

^{**} Série APAB

3000 50 H) r/min z						30/400 \ pôles	V							
		IE3 S1													
		P_N	n _N	M_{N}	I	N	cos φ		η		M _A /M _N	M _K /M _N	I _A /I _N	J	kg
Ty	pes				230 V	400 V	4/4xP _N	1/2xP _N	3/4xP _N	4/4xP _N					*
		[kW]	[r/min]	[Nm]	[A]	[A]		[%]	[%]	[%]				[kgm²]	[kg]
63	SP/2	0,18	2.750	0,63	0,78	0,45	0,84	65,1	68,9	68,2	3,3	3,3	4,9	0,00021	3,8
63	LP/2	0,25	2.770	0,86	0,98	0,57	0,82	74,2	76,7	76,3	3,2	3,2	5,5	0,00024	4,7
71	SP/2	0,37	2.845	1,24	1,52	0,88	0,77	71,8	76,2	77,3	3,4	3,5	5,1	0,00035	6,1
71	LP/2	0,55	2.820	1,86	2,11	1,22	0,80	79,1	81,5	81,2	3,8	3,7	5,8	0,00046	7,2
80	SP/2	0,75	2.870	2,50	2,72	1,57	0,85	78,8	81,5	81,6	3,9	4,3	7,6	0,000897	9,7
90	RP/2	1,10	2.865	3,67	3,71	2,14	0,89	84,0	84,9	83,8	3,0	3,3	6,9	0,00145	15,1
90	SP/2	1,5	2.875	4,98	5,21	3,01	0,85	84,1	85,3	84,4	3,5	3,6	7,1	0,0016	15,1
90	LP/2	2,2	2.895	7,26	7,93	4,58	0,81	84,4	86,4	86,4	3,9	4,7	7,5	0,0023	16,8
112	SP/2	3,0	2.940	9,74	10,1	5,81	0,85	84,4	87,0	88,0	4,6	5,3	11,1	0,0069	35,5
112	MP/2	4,0	2.920	13,08	12,7	7,36	0,89	89,1	90,0	89,6	3,6	4,4	9,2	0,00769	35,5
132	SP/2	5,5	2.945	17,84	17,26	9,96	0,89	88,6	90,1	90,2	4,3	4,9	10,2	0,0155	55
132	MP/2	7,5	2.945	24,32	23,13	13,35	0,90	90,0	91,1	91,0	4,2	5,1	10,6	0,02	55

^{*} Position de montage B5, sans options

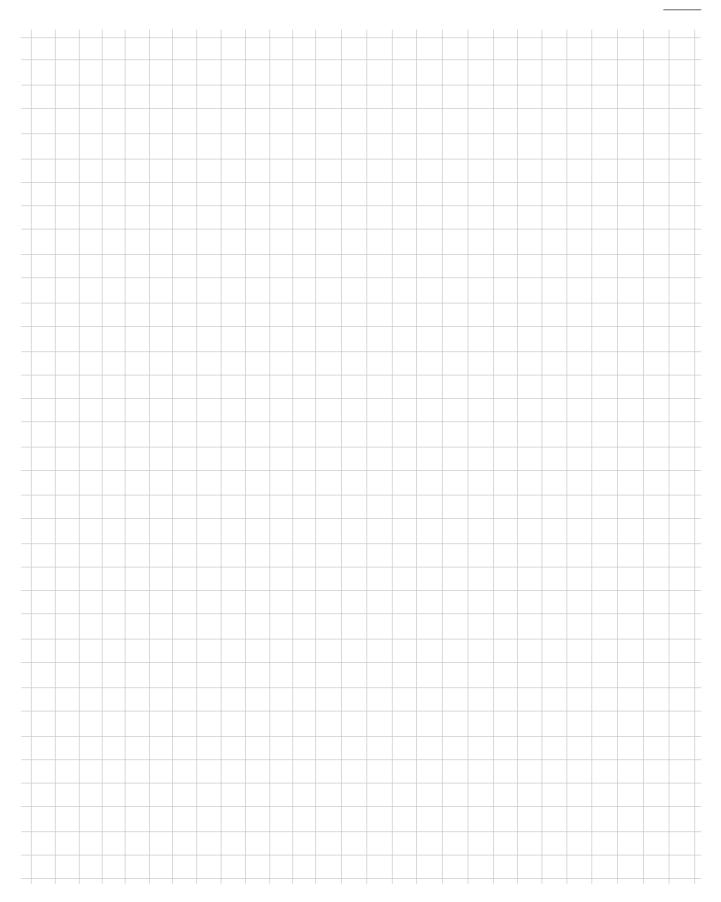
3000 50 H) r/min z						20/380 v pôles	V							
		IE3 S1													
		P_{N}	n _N	M _N	I	N	cos φ		η		M _A /M _N	M _K /M _N	I _A /I _N	J	kg
Ty	pes				220 V	380 V	4/4xP _N	1/2xP _N	3/4xP _N	4/4xP _N					*
		[kW]	[r/min]	[Nm]	[A]	[A]		[%]	[%]	[%]				[kgm²]	[kg]
63	SP/2	0,18	2.750	0,63	0,81	0,47	0,84	65,1	68,9	68,2	3,3	3,3	4,9	0,00021	3,8
63	LP/2	0,25	2.770	0,86	1,04	0,60	0,82	74,2	76,7	76,3	3,2	3,2	5,5	0,00024	4,7
71	SP/2	0,37	2.845	1,24	1,61	0,93	0,77	71,8	76,2	77,3	3,4	3,5	5,1	0,00035	6,1
71	LP/2	0,55	2.820	1,86	2,23	1,29	0,80	79,1	81,5	81,2	3,8	3,7	5,8	0,00046	7,2
80	SP/2	0,75	2.870	2,50	2,86	1,65	0,85	78,8	81,5	81,6	3,9	4,3	7,6	0,000897	9,7
90	RP/2	1,1	2.865	3,67	3,90	2,25	0,89	84,0	84,9	83,8	3,0	3,3	6,9	0,00145	15,1
90	SP/2	1,5	2.875	4,98	5,49	3,17	0,85	84,1	85,3	84,4	3,5	3,6	7,1	0,0016	15,1
90	LP/2	2,2	2.895	7,26	8,35	4,82	0,81	84,4	86,4	86,4	3,9	4,7	7,5	0,0023	16,8
112	SP/2	3,0	2.940	9,74	10,59	6,12	0,85	84,4	87,0	88,0	4,6	5,3	11,1	0,0069	35,5
112	MP/2	4,0	2.920	13,08	13,42	7,75	0,89	89,1	90,0	89,6	3,6	4,4	9,2	0,00769	35,5
132	SP/2	5,5	2.945	17,84	18,20	10,5	0,89	88,6	90,1	90,2	4,3	4,9	10,2	0,0155	55,0
132	MP/2	7,5	2.945	24,32	24,40	14,1	0,90	90,0	91,1	91,0	4,2	5,1	10,6	0,02	55,0

^{*} Position de montage B5, sans options

3000 60 H) r/min z						65/460 ' 2 pôles	V							
		IE3 S1													
		P _N	n _N	M _N	I	N	cos φ		η		M _A /M _N	M _K /M _N	I _A /I _N	J	kg
Ty	pes				265 V	460 V	4/4xP _N	1/2xP _N	3/4xP _N	4/4xP _N					*
		[kW]	[r/min]	[Nm]	[A]	[A]		[%]	[%]	[%]				[kgm²]	[kg]
63	SP/2	0,18	3.390	0,51	0,69	0,4	0,81	62,4	68,1	69,6	3,9	3,9	5,0	0,00021	3,8
63	LP/2	0,25	3.400	0,70	0,86	0,5	0,8	71,6	76,0	77,1	4,1	4,0	6,3	0,00024	4,7
71	SP/2	0,37	3.465	1,02	1,32	0,76	0,74	70,5	76,1	78,4	4,2	4,5	6,3	0,00035	6,1
71	LP/2	0,55	3.445	1,52	1,87	1,08	0,78	77,9	81,4	82,3	4,5	4,5	6,0	0,00046	7,2
80	SP/2	0,75	3.485	2,06	2,42	1,40	0,83	73,8	78,6	80,3	4,6	4,9	8,0	0,000897	9,7
90	RP/2	1,1	3.485	3,01	3,22	1,86	0,88	81,7	84,2	84,3	3,3	3,9	8,2	0,00145	15,1
90	SP/2	1,5	3.495	4,10	4,54	2,62	0,84	82,9	85,2	85,5	3,2	4,4	5,5	0,0016	15,1
90	LP/2	2,2	3.510	5,99	6,93	4,00	0,81	83,6	86,2	86,9	4,5	5,7	9,0	0,0023	16,8
112	MP/2	4,0	3.530	10,82	11,20	6,48	0,88	86,0	88,2	88,9	4,2	5,1	11,4	0,00769	35,5
132	SP/2	5,5	3.550	14,80	15,02	8,67	0,89	86,8	89,3	90,1	4,8	5,5	11,8	0,0155	55,0
132	MP/2	7,5	3.550	20,18	20,26	11,7	0,90	88,5	90,5	91,0	5,0	5,7	12,1	0,02	55,0

 $^{^{\}star}$ Position de montage B5, sans options

100 50 l	0 r/min Hz						30/400 \ 6 pôles	V							
		IE3 S1													
		P_{N}	n _N	M_{N}		N	cos φ		η		M_A/M_N	M_{K}/M_{N}	I_A/I_N	J	kg
T	ypes				230 V	400 V	4/4xP _N	1/2xP _N	3/4xP _N	$4/4xP_N$					*
		[kW]	[r/min]	[Nm]	[A]	[A]		[%]	[%]	[%]				[kgm²]	[kg]
71	RP/6	0,12	935	1,23	0,8	0,46	0,63	49,4	56,7	59,7	2,3	2,7	3,2	0,00091	6,1
71	SP/6	0,18	935	1,84	1,06	0,61	0,62	60,0	66,9	68,5	3,3	3,4	4,0	0,0015	6,1
80	RP/6	0,25	940	2,54	1,32	0,76	0,67	65,0	69,7	70,6	2,0	2,6	3,7	0,0017	9,7
80	SP/6	0,37	940	3,76	1,85	1,07	0,66	70,7	75,2	75,9	2,8	3,1	4,4	0,00264	9,7
90	RP/6	0,55	950	5,53	2,34	1,35	0,73	77,5	79,7	79,4	2,2	2,9	5,0	0,005	15,1
90	SP/6	0,75	945	7,58	3,46	2,00	0,67	77,9	80,3	80,5	2,9	3,4	5,4	0,005	15,1
100	SP/6	1,1	955	11,00	4,64	2,68	0,71	81,2	83,1	82,7	2,5	3,0	5,0	0,0092	24,5
100	LP/6	1,5	955	15,00	6,87	3,97	0,66	80,8	83,2	83,3	3,5	3,7	5,7	0,0128	24,5
112	MP/6	2,2	965	21,77	9,54	5,51	0,67	84,3	86,1	86,1	3,6	4,0	6,6	0,018	35,5
132	SP/6	3,0	975	29,38	11,9	6,87	0,72	84,8	87,0	87,3	3,1	3,9	7,7	0,038	55,0
132	MP/6	4,0	965	39,59	14,8	8,55	0,77	87,9	88,5	87,7	2,4	3,3	6,6	0,0377	55,0


^{*} Position de montage B5, sans options

100 50 H	0 r/min Iz						20/380 \ 6 pôles	V							
		IE3 S1													
		P_N	n _N	$M_{_{\rm N}}$	I,	N	cos φ		η		M_A/M_N	M_{K}/M_{N}	I_A/I_N	J	kg
Ty	ypes				230 V	400 V	4/4xP _N	1/2xP _N	3/4xP _N	4/4xP _N					*
		[kW]	[r/min]	[Nm]	[A]	[A]		[%]	[%]	[%]				[kgm²]	[kg]
71	RP/6	0,12	925	1,24	0,85	0,48	0,64	49,4	56,7	59,7	2,3	2,7	3,0	0,00091	6,1
71	SP/6	0,18	935	1,84	1,11	0,64	0,62	60,0	66,9	68,5	3,3	3,4	4,0	0,0015	6,1
80	RP/6	0,25	940	2,54	1,39	0,80	0,67	65,0	69,7	70,6	2,0	2,6	3,7	0,0017	9,7
80	SP/6	0,37	940	3,76	1,95	1,13	0,66	70,7	75,2	75,9	2,8	3,1	4,4	0,00264	9,7
90	RP/6	0,55	950	5,53	2,46	1,42	0,73	77,5	79,7	79,4	2,2	2,9	5,0	0,005	15,1
90	SP/6	0,75	945	7,58	3,65	2,11	0,67	77,9	80,3	80,5	2,9	3,4	5,4	0,005	15,1
100	SP/6	1,1	955	11,00	4,88	2,82	0,71	81,2	83,1	82,7	2,5	3,0	5,0	0,0092	24,5
100	LP/6	1,5	955	15,00	7,24	4,18	0,66	80,8	83,2	83,3	3,5	3,7	5,7	0,0128	24,5
112	MP/6	2,2	965	21,77	10,05	5,8	0,67	84,3	86,1	86,1	3,6	4,0	6,6	0,018	35,5
132	SP/6	3,0	975	29,38	12,53	7,23	0,72	84,8	87,0	87,3	3,1	3,9	7,7	0,038	55,0
132	MP/6	4,0	965	39,59	15,59	9,00	0,77	87,9	88,5	87,7	2,4	3,3	6,6	0,0377	55,0

^{*} Position de montage B5, sans options

Premium Efficiency (Amérique du Nord)

1800 60 H) r/min z							230/4 4 pôl									
		Prem S1	nium Ef	ficienc	у												
		P_{N}	**	n _N	M _N	I	N	cos φ		η		M_A/M_N	M_{K}/M_{N}	I _A /I _N	Codeletter	J	kg
Ty	pes					230 V	460 V	4/4xP _N	1/2xP _N	3/4xP _N	4/4xP _N				⇒ □ A20		*
		[hp]	[kW]	[r/min]	[Nm]	[A]	[A]		[%]	[%]	[%]					[kgm²]	[kg]
63	SP/4	0,16	0,12	1695	0,67	0,72	0,36	0,62	58,9	65,9	68,5	3,40	3,40	4,02	Н	0,00024	3,80
63	LP/4	0,25	0,18	1705	1,04	1,08	0,54	0,57	63,6	70,2	72,3	4,00	3,80	4,34	J	0,00033	4,70
71	SP/4	0,33	0,25	1725	1,36	1,26	0,63	0,67	67,7	74,3	75,8	3,80	4,00	5,92	K	0,00086	6,10
71	LP/4	0,50	0,37	1725	2,06	1,62	0,81	0,72	73,2	78,0	79,2	3,20	3,60	6,12	J	0,00110	7,20
80	SP/4	0,75	0,55	1735	3,08	2,30	1,15	0,72	79,8	82,7	83,4	2,80	3,30	6,11	J	0,00145	9,70
80	LP/4	1,00	0,75	1730	4,12	3,14	1,57	0,70	84,4	86,1	86,1	3,50	3,80	6,50	K	0,0019	10,2
90	SP/4	1,50	1,10	1740	6,14	4,20	2,10	0,76	86,3	87,4	86,9	4,10	4,80	8,40	L	0,0034	15,1
90	LP/4	2,00	1,50	1730	8,23	5,60	2,80	0,78	86,3	87,4	87,0	3,90	4,40	7,60	K	0,0039	16,8
100	LP/4***	3,00	2,2	1765	11,9	8,21	4,11	0,75	87,7	89,3	89,5	4,6	5,0	9,6	М	0,0074	24,5
100	AP/4***	4,00	3,0	1760	16,3	10,9	5,43	0,79	88,7	89,7	89,5	3,6	4,5	8,8	L	0,0086	27,4
112	MP/4	5,00	3,70	1755	20,3	13,0	6,50	0,8	89,2	90,4	90,3	4,00	4,60	9,50	L	0,014	35,5
132	SP/4	7,50	5,50	1770	30,2	19,5	9,75	0,77	90,2	91,5	91,7	4,60	4,90	10,2	М	0,032	55,0
132	MP/4	10,0	7,50	1765	40,3	26,7	13,4	0,77	90,7	91,6	91,7	4,70	5,00	9,60	М	0,035	62,0
160	MP/4	15,0	11,0	1770	60,3	35,6	17,8	0,84	91,2	92,5	92,5	3,20	3,70	8,80	K	0,067	93,0
160	LP/4	20,0	15,0	1775	80,2	47,6	23,8	0,85	90,9	92,3	93,0	4,40	4,70	10,8	М	0,092	122
180	MP/4	25,0	18,5	1780	100	60,6	30,3	0,82	92,5	93,4	93,6	3,90	3,90	10,1	L	0,160	155
180	LP/4	30,0	22,0	1780	120	69,6	34,8	0,85	93,6	94,0	93,6	3,20	3,30	8,80	K	0,160	155

^{*} Position de montage B5, sans options

^{***} Série APAB

1800 60 H) 1/min z							0 V ∆ oôles								
		Prem S1	ium Eff	iciency												
		P_{N}	**	n _N	M_{N}	I _N	cos φ		η		M_A/M_N	M_{K}/M_{N}	I_A/I_N	Codeletter	J	kg
Ty	pes					460 V	4/4xP _N	1/2xP _N	3/4xP _N	4/4xP _N				⇒ □ A20		*
		[hp]	[kW]	[1/min]	[Nm]	[A]		[%]	[%]	[%]					[kgm²]	[kg]
225	RP/4	40,0	30,0	1785	160	49,5	0,81	93,4	94,4	94,5	3,40	3,90	8,91	K	0,490	315
225	SP/4	50,0	37,0	1785	199	59,7	0,82	93,6	94,5	94,6	3,00	3,60	8,79	K	0,540	330
225	MP/4	60,0	45,0	1785	239	72,0	0,83	94,6	95,2	95,2	3,40	3,60	9,10	K	0,670	365
250	WP/4	75,0	55,0	1785	299	84,4	0,86	95,2	94,5	95,4	2,80	3,10	8,15	J	0,820	400

^{*} Position de montage B5, sans options

^{**} SF=1,15

^{**} SF=1,15

Premium Efficiency (Amérique du Nord)

1800 60 H	r/min z							575 V pôles								
		Prem S1	nium Ef	ficiency	1											
		P_{N}	**	n _N	$M_{_{\rm N}}$	I _N	cos φ		η		M_A/M_N	M_{K}/M_{N}	I_A/I_N	Codeletter	J	kg
Ty	pes					575 V	4/4xP _N	1/2xP _N	3/4xP _N	4/4xP _N				⇒ 🕮 A20		*
		[hp]	[kW]	[r/min]	[Nm]	[A]		[%]	[%]	[%]					[kgm²]	[kg]
63	SP/4	0,16	0,12	1695	0,67	0,29	0,62	58,9	65,9	68,5	3,40	3,40	4,02	Н	0,00024	3,80
63	LP/4	0,25	0,18	1705	1,04	0,43	0,57	63,6	70,2	72,3	4,00	3,80	4,34	J	0,00033	4,70
71	SP/4	0,33	0,25	1725	1,36	0,50	0,67	67,7	74,3	75,8	3,80	4,00	5,92	K	0,00086	6,10
71	LP/4	0,50	0,37	1725	2,06	0,65	0,72	73,2	78,0	79,2	3,20	3,60	6,12	J	0,00110	7,20
80	SP/4	0,75	0,55	1735	3,08	0,92	0,72	79,8	82,7	83,4	2,80	3,30	6,11	J	0,00145	9,70
80	LP/4	1,00	0,75	1730	4,12	1,26	0,70	84,4	86,1	86,1	3,50	3,80	6,50	K	0,0019	10,2
90	SP/4	1,50	1,10	1740	6,14	1,68	0,76	86,3	87,4	86,9	4,10	4,80	8,40	L	0,0034	15,1
90	LP/4	2,00	1,50	1730	8,23	2,24	0,78	86,3	87,4	87,0	3,90	4,40	7,60	K	0,0039	16,8
100	LP/4***	3,00	2,20	1765	11,9	3,28	0,75	87,7	89,3	89,5	4,6	5,0	9,6	M	0,0081	28,0
100	AP/4***	4,00	3,00	1760	16,3	4,34	0,79	88,7	89,7	89,5	3,6	4,5	8,8	L	0,0081	28,0
112	MP/4	5,00	3,70	1755	20,3	5,20	0,80	89,2	90,4	90,3	4,00	4,60	9,50	L	0,014	35,5
132	SP/4	7,50	5,50	1770	30,2	7,80	0,77	90,2	91,5	91,7	4,60	4,90	10,2	M	0,032	55,0
132	MP/4	10,0	7,50	1765	40,3	10,7	0,77	90,7	91,6	91,7	4,70	5,00	9,60	M	0,035	62,0
160	MP/4	15,0	11,0	1770	60,3	14,2	0,84	91,2	92,5	92,5	3,20	3,70	8,80	K	0,067	93,0
160	LP/4	20,0	15,0	1775	80,2	19,0	0,85	90,9	92,3	93,0	4,40	4,70	10,8	M	0,092	122
180	MP/4	25,0	18,5	1780	100	24,2	0,82	92,5	93,4	93,6	3,90	3,90	10,1	L	0,160	155
180	LP/4	30,0	22,0	1780	120	27,8	0,85	93,6	94,0	93,6	3,20	3,30	8,80	K	0,160	155
225	RP/4	40,0	30,0	1785	160	39,6	0,81	93,4	94,4	94,5	3,40	3,90	8,91	K	0,490	315
225	SP/4	50,0	37,0	1785	199	47,8	0,82	93,6	94,5	94,6	3,00	3,60	8,79	K	0,540	330
225	MP/4	60,0	45,0	1785	239	57,6	0,83	94,6	95,2	95,2	3,40	3,60	9,10	K	0,670	365
250	WP/4	75,0	55,0	1785	299	67,5	0,86	95,2	94,5	95,4	2,80	3,10	8,15	J	0,820	400

 $^{^{\}star}$ Position de montage B5, sans options ** SF=1,15

^{***} Série APAB

IE3 - Brésil

1800 60 H	r/min z)/380 V ôles							
		IE3 S1												
		P_N	S_{F}	n _N	$M_{_{\rm N}}$	I	N	cos φ	η	M _A /M _N	M _K /M _N	I _A /I _N	J	kg
Ty	pes					220 V	380 V	4/4xP _N	4/4xP _N					*
		[kW]		[r/min]	[Nm]	[A]	[A]		[%]				[kgm²]	[kg]
63	SP/4	0,12	1,15	1670	0,69	0,67	0,39	0,68	68,5	2,90	2,80	3,70	0,00024	3,80
63	LP/4	0,18	1,15	1690	1,02	1,11	0,64	0,61	69,5	3,60	3,40	4,00	0,00033	4,70
71	SP/4	0,25	1,15	1720	1,39	1,26	0,73	0,69	73,4	3,50	3,70	5,70	0,00086	6,10
71	LP/4	0,37	1,15	1720	2,05	1,66	0,96	0,73	78,2	3,00	3,30	5,70	0,00110	7,20
80	SP/4	0,55	1,15	1725	3,04	2,32	1,34	0,75	81,4	2,60	3,10	5,80	0,00145	9,70
80	LP/4	0,75	1,15	1730	4,14	3,29	1,90	0,70	83,5	3,40	3,80	6,50	0,0019	10,2
90	SP/4	1,10	1,15	1740	6,04	4,40	2,54	0,76	86,5	4,20	4,90	8,40	0,0034	15,1
90	LP/4	1,50	1,15	1730	8,28	5,87	3,39	0,78	86,5	3,90	4,30	7,60	0,0039	16,8
100	LP/4 **	2,20	1,15	1765	11,9	8,58	4,58	0,75	89,5	3,80	5,00	9,60	0,0074	24,5
100	AP/4 **	3,00	1,15	1760	16,2	11,4	6,57	0,79	89,5	3,60	4,50	8,80	0,0086	27,4
112	MP/4	3,70	1,15	1755	20,1	13,7	7,89	0,8	89,5	4,00	4,60	9,40	0,014	35,5
112	MP/4	4,40	1,15	1750	24,0	16,3	9,40	0,81	89,5	3,80	4,40	9,20	0,014	35,5
132	SP/4	5,50	1,15	1770	29,7	20,4	11,8	0,77	91,7	4,70	5,00	10,2	0,032	55,0
132	MP/4	7,50	1,15	1765	40,6	28,4	16,4	0,77	91,7	4,70	5,00	9,60	0,035	62,0
160	SP/4	9,20	1,15	1780	49,4	33,1	19,1	0,8	91,7	3,80	4,50	9,90	0,067	93,0
160	MP/4	11,0	1,15	1770	59,3	37,3	21,5	0,84	92,4	3,20	3,80	8,80	0,067	93,0
160	LP/4	15,0	1,15	1775	80,7	49,9	28,8	0,85	93,0	4,30	4,70	10,8	0,092	122
180	MP/4	18,5	1,15	1780	99,2	63,4	36,6	0,82	93,6	3,90	4,00	10,1	0,160	155
180	LP/4	22,0	1,15	1780	118	77,9	45,0	0,80	93,6	3,30	3,40	8,80	0,160	155
225	RP/4	30,0	1,15	1785	160	104	59,8	0,81	94,1	3,40	3,90	8,90	0,490	315
225	SP/4	37,0	1,15	1785	198	125	72,3	0,82	94,5	3,00	3,70	8,80	0,540	330
225	MP/4	45,0	1,15	1785	241	151	86,9	0,83	95,0	3,30	3,60	9,10	0,670	365
250	WP/4	55,0	1,15	1785	294	177	102	0,86	95,4	2,90	3,20	8,20	0,820	400

^{*} Position de montage B5, sans options

^{**} Série APAB

1800 60 H	0 r/min Iz					44 4 pô	0 V les						
		IE3 S1											
		P_{N}	S _F	n _N	M_{N}	I _N	cos φ	η	M _A /M _N	M _K /M _N	I _A /I _N	J	kg
T	ypes					440 V	$4/4xP_N$	4/4xP _N					*
		[kW]		[r/min]	[Nm]	[A]		[%]				[kgm²]	[kg]
63	SP/4	0,12	1,15	1680	0,68	0,36	0,65	68,0	3,10	3,00	3,90	0,00024	3,80
63	LP/4	0,18	1,15	1690	1,02	0,56	0,61	69,5	3,60	3,40	4,00	0,00033	4,70
71	SP/4	0,25	1,15	1720	1,39	0,61	0,70	76,0	3,40	3,50	5,70	0,00086	6,10
71	LP/4	0,37	1,15	1715	2,06	0,81	0,75	79,2	3,00	3,30	5,80	0,00110	7,20
80	SP/4	0,55	1,15	1725	3,04	1,15	0,75	83,4	2,60	3,10	5,80	0,00145	9,70
80	LP/4	0,75	1,15	1720	4,16	1,58	0,73	85,3	3,20	3,40	6,30	0,0019	10,2
90	SP/4	1,10	1,15	1740	6,04	2,12	0,78	86,5	3,80	4,40	8,00	0,0034	15,1
90	LP/4	1,50	1,15	1725	8,30	2,83	0,80	86,9	3,50	3,90	7,20	0,0039	16,8
100	LP/4 **	2,20	1,15	1765	11,9	4,30	0,75	89,8	3,80	5,00	9,60	0,0074	24,5
100	AP/4 **	3,00	1,15	1760	16,3	5,68	0,79	89,5	3,60	4,50	8,80	0,0086	27,5
112	MP/4	3,70	1,15	1755	20,1	6,81	0,80	89,5	4,00	4,60	9,40	0,014	35,5
112	MP/4	4,40	1,15	1750	24,0	8,12	0,81	89,5	3,80	4,40	9,20	0,014	35,5
132	SP/4	5,50	1,15	1765	29,8	9,79	0,81	91,7	4,20	4,50	9,70	0,032	55,0
132	MP/4	7,50	1,15	1765	40,6	13,6	0,79	91,7	4,30	4,60	9,00	0,035	62,0
160	SP/4	9,20	1,15	1780	49,4	16,4	0,80	92,4	3,80	4,50	9,90	0,067	93,0
160	MP/4	11,0	1,15	1770	59,3	18,6	0,84	92,5	3,20	3,80	8,80	0,067	93,0
160	LP/4	15,0	1,15	1775	80,7	24,9	0,85	93	4,30	4,70	11,1	0,092	122
180	MP/4	18,5	1,15	1780	99,2	31,9	0,82	93,6	3,90	4,00	10,1	0,160	155
180	LP/4	22,0	1,15	1780	118	36,6	0,85	93,6	3,30	3,40	8,80	0,160	155
225	RP/4	30,0	1,15	1785	160	49,8	0,84	94,2	3,10	3,50	8,50	0,490	315
225	SP/4	37,0	1,15	1785	198	62,4	0,82	94,6	3,00	3,70	8,80	0,540	330
225	MP/4	45,0	1,15	1785	241	75,3	0,83	95,2	3,30	3,60	9,10	0,670	365
250	WP/4	55,0	1,15	1785	294	88,2	0,86	95,4	2,90	3,20	8,20	0,820	400

^{*} Position de montage B5, sans options

^{**} Série APAB

IE3 - Corée du Sud

1800 r/min 220/380 V 60 Hz 4 pôles IE3 **S**1 $M_{\rm N}$ kg cos φ M_{Λ}/M_{Λ} M_L/M_N I_{Δ}/I_{N} J $n_{_{\!N}}$ η $4/4xP_N$ **Types** 220 V 380 V 4/4xP_N [kW] [r/min] [Nm] [A] [A] [kgm²] [kg] [%] SP/4 0,12 1670 0,69 0,67 0,39 0,68 68,5 2,9 2,8 3,7 0,00024 3,80 63 LP/4 0,18 1690 1,02 1,11 0,64 0,61 69,5 3,6 3,4 4,0 0,00033 4,70 SP/4 71 0,25 1720 1,39 0,73 0,69 75,8 3,5 3,7 5,7 0,00086 6,10 1,26 71 LP/4 0,37 1720 2,05 1,66 0,96 0,73 78,2 3,0 3,3 0,00110 7,20 5,7 80 SP/4 0.55 1725 3.04 2.32 1,34 0,75 81.4 2,6 3,1 5,8 0.00145 9.70 LP/4 4,14 0,70 3,4 3,8 10,2 80 0,75 1730 3,29 1,90 83,5 6,5 0,0019 90 SP/4 1740 6,04 2,54 0,76 4,2 4,9 15,1 1,10 4,40 86,5 8,4 0,0034 3,9 LP/4 1730 8,28 0,78 4,3 0,0039 16,8 90 1,50 5,87 3,39 86,5 7,6 100 LP/4 2,20 1770 11,9 8,05 4,65 0,79 89,5 3,0 4,4 9,1 0,0081 28,0 100 AP/4 3,00 1765 16,2 10,7 6,18 0,79 89,5 2,7 4,2 8,8 0,0081 28,0 112 MP/4 4,00 1750 21,8 14,3 8,29 0,82 89,5 3,7 4,3 9,0 0,014 35,5 MP/4 5,50 1770 29,7 19,9 0,79 4,8 5,1 10,1 0,035 62,0 132 11,5 91,7 LP/4 7,50 1775 40,3 27,5 0,78 4,0 4,5 9,1 0,035 64,0 132 15,9 91,7 160 SP/4 9,20 1780 49,4 33.1 19,1 0,80 91.7 3,8 4,5 9,9 0,067 93.0 160 MP/4 11,0 1770 59,3 37,3 21,5 0,84 92.4 3,2 3,8 8.8 0,067 93,0 LP/4 1775 80,7 49,9 28,8 0,85 93,0 4,3 4,7 10,8 0,092 122 160 15,0 180 MP/4 18,5 1780 99,2 63,4 36,6 0,82 93,6 3,9 4,0 10,1 0,16 155

LP/4

RP/4

SP/4

MP/4

WP/4

22,0

30,0

37,0

45,0

55,0

1780

1785

1785

1785

1785

118

160

198

241

294

77,9

104

125

151

177

45,0

59,8

72,3

86,9

102

0,80

0,81

0,82

0,83

0,86

93,6

94,1

94,5

95,0

95,4

3,3

3,4

3,0

3,3

2,9

3,4

3,9

3,7

3,6

3,2

8,8

8,9

8,8

9,1

8,2

0,16

0,49

0,54

0,67

0,82

155

315

330

365

400

180

225

225

225

250

Position de montage B5, sans options

IE3 - Corée du Sud

1800 r/ 60 Hz	min					40 V lôles						
		IE3 S1										
		P _N	n _N	M _N	I _N	cos φ	η	M _A /M _N	M _K /M _N	I _A /I _N	J	kg
Ту	pes				440 V	4/4xP _N	4/4xP _N					*
		[kW]	[r/min]	[Nm]	[A]		[%]				[kgm²]	[kg]
63	SP/4	0,12	1680	0,68	0,36	0,65	66,0	3,1	3,0	3,9	0,00024	3,80
63	LP/4	0,18	1690	1,02	0,56	0,61	69,5	3,6	3,4	4,0	0,00033	4,70
71	SP/4	0,25	1720	1,39	0,61	0,70	73,4	3,4	3,5	5,7	0,00086	6,10
71	LP/4	0,37	1715	2,06	0,81	0,75	78,2	3,0	3,3	5,8	0,00110	7,20
80	SP/4	0,55	1725	3,04	1,15	0,75	81,4	2,6	3,1	5,8	0,00145	9,70
80	LP/4	0,75	1720	4,16	1,58	0,73	83,5	3,2	3,4	6,3	0,0019	10,2
90	SP/4	1,10	1740	6,04	2,12	0,78	86,5	3,8	4,4	8,0	0,0034	15,1
90	LP/4	1,50	1725	8,30	2,83	0,80	86,5	3,5	3,9	7,2	0,0039	16,8
100	LP/4	2,20	1765	11,9	3,97	0,80	89,5	2,7	4,1	8,5	0,0081	28,0
112	MP/4	3,00	1760	16,3	5,49	0,80	89,5	4,1	4,7	9,9	0,014	35,5
112	MP/4	4,00	1745	21,9	7,11	0,82	89,5	3,4	3,9	9,2	0,014	35,5
132	MP/4	5,50	1770	29,7	9,93	0,79	91,7	4,8	5,2	10,2	0,035	62,0
132	LP/4	7,50	1775	40,3	13,9	0,78	91,7	4,0	4,5	9,1	0,035	62,0
160	SP/4	9,20	1780	49,4	16,4	0,80	91,7	3,8	4,5	9,9	0,067	93,0
160	MP/4	11,0	1770	59,3	18,6	0,84	92,4	3,2	3,8	8,8	0,067	93,0
160	LP/4	15,0	1775	80,7	24,9	0,85	93,0	4,3	4,7	11,1	0,092	122
180	MP/4	18,5	1780	99,2	31,9	0,82	93,6	3,9	4,0	10,1	0,16	155
180	LP/4	22,0	1780	118	38,7	0,80	93,6	3,5	3,5	9,1	0,16	155
225	RP/4	30,0	1785	160	49,8	0,84	94,1	3,1	3,5	8,5	0,49	315
225	SP/4	37,0	1785	198	62,4	0,82	94,5	3,0	3,7	8,8	0,54	330
225	MP/4	45,0	1785	241	75,3	0,83	95,0	3,3	3,6	9,1	0,67	365
250	WP/4	55,0	1785	294	88,2	0,86	95,4	2,9	3,2	8,2	0,82	400

^{*} Position de montage B5, sans options

Standard - commutation de polarité

1500 / 3000 r/min 50 Hz 400 V D/YY 4 - 2 pôles

Commutation de polarité S1

		P_{N}	n _N	M_N	I _N	COS	η	M_A/M_N	M_{κ}/M_{N}	I_A/I_N	J	kg
T	ypes				400 V	φ						*
		[kW]	[r/min]	[Nm]	[A]		[%]				[kgm²]	[kg
63	S/4-2	0,10	1415	0,67	0,64	0,58	38,9	3,30	3,60	2,50	0.00001	3,60
03	5/4-2	0,15	2840	0,50	0,73	0,68	43,6	3,20	3,80	2,80	0,00021	3,00
63	L/4-2	0,15	1400	1,02	0,95	0,57	40,0	2,90	3,10	2,30	0,00028	4,20
03	L/4-Z	0,19	2850	0,64	0,95	0,66	43,7	3,30	3,90	3,00	0,00020	4,20
71	S/4-2	0,21	1410	1,42	0,66	0,73	62,9	2,10	2,30	3,60	0.00072	5,4
/ 1	3/4-2	0,28	2780	0,96	0,80	0,86	58,7	2,50	2,70	3,90	0,00072	5,4
71	L/4-2	0,30	1385	2,07	0,98	0,75	58,9	2,10	2,10	3,30	0.00006	6.0
/ 1	L/4-Z	0,45	2715	1,58	1,30	0,88	56,8	1,60	1,80	3,40	0,00086	6,3
80	S/4-2	0,48	1390	3,30	1,30	0,77	69,2	1,70	1,80	3,30	0.00109	0.0
00	5/4-2	0,60	2785	2,06	1,66	0,82	63,6	1,80	2,00	3,60	0,00109	8,0
00	1/4.0	0,70	1355	4,93	1,84	0,79	69,5	1,60	1,70	3,30	0.00140	0.0
80	L/4-2	0,85	2770	2,93	2,34	0,80	65,5	2,00	2,00	3,60	0,00140	9,0
00	0/4.0	1,10	1400	7,50	2,68	0,84	70,5	1,50	2,10	3,90	0.00005	10
90	S/4-2	1,40	2780	4,81	3,50	0,88	65,6	1,60	2,10	3,90	0,00235	12,
00	1./4.0	1,50	1380	10,4	3,50	0,81	76,4	2,00	2,10	3,90	0.00010	4.4
90	L/4-2	1,90	2775	6,54	4,70	0,82	71,2	2,30	2,30	4,20	0,00313	14,
100	1./4.0	2,00	1400	13,6	4,60	0,75	83,7	1,80	2,00	3,70	0.0045	10
100	L/4-2	2,40	2830	8,10	5,50	0,85	74,1	2,00	2,20	4,50	0,0045	18,
400	1.4/4.0	2,60	1380	18,0	5,62	0,87	76,8	1,80	2,10	3,90	0.000	0.4
100	LA/4-2	3,10	2825	10,5	6,71	0,88	75,8	2,10	2,20	4,90	0,006	21,
		3,70	1435	24,6	7,90	0,84	80,5	2,00	2,60	4,90	0.011	
112	M/4-2	4,40	2905	14,5	9,60	0,83	79,7	2,40	3,00	6,00	0,011	32,
		4,00	1455	26,3	8,72	0,78	84,9	2,50	3,20	5,70	0.0400	
112	MA/4-2	5,10	2900	16,8	11,9	0,77	80,3	2,80	3,30	6,40	0,0128	32,
400	0/4.0	4,70	1465	30,6	9,30	0,84	86,8	1,90	2,50	4,90	0.004	
132	S/4-2	5,90	2905	19,4	12,0	0,88	80,6	2,30	2,70	5,80	0,024	44,
		6,50	1450	42,8	13,0	0,83	87,0	2,20	2,60	5,40		
132	M/4-2	8,00	2915	26,2	18,0	0,79	81,2	2,60	2,90	6,20	0,032	55,
		7,30	1455	47,9	14,3	0,84	87,7	2,70	3,20	7,00		
132	MA/4-2	9,00	2930	29,3	18,7	0,83	83,7	2,70	3,50	7,60	0,035	62,
		9,30	1450	61,2	18,0	0,88	84,7	2,20	2,50	5,00	1	
160	M/4-2	11,5	2935	37,4	22,4	0,91	81,4	2,20	3,00	6,20	0,050	78,
105		13,0	1460	85,0	24,1	0,88	88,5	2,70	3,20	7,50	0.00=	
160	L/4-2	17,0	2945	55,1	31,1	0,93	84,8	2,60	3,40	7,40	0,067	93,

^{*} Position de montage B5, sans options

Standard CUS - commutation de polarité

1800 / 3600 r/min 60 Hz 230/460/575 V 4 - 2 pôles

Commutation de polarité CUS S1

		F	N N	n _N	M_{N}		I _N		cos	η	M_A/M_N	M_{K}/M_{N}	I_A/I_N	J	kg
Ty	pes					230 V	460 V	575 V	φ						*
		[HP]	[kW]	[r/min]	[Nm]	[A]	[A]	[A]		[%]				[kgm²]	[kg]
60	S/4-2	0,13	0,10	1700	0,56	1,28	0,64	0,53	0,58	33,8	3,8	3,9	2,40	0.00001	2.60
63	3/4-2	0,20	0,15	3410	0,42	1,46	0,73	0,61	0,68	37,9	3,3	4,0	2,60	0,00021	3,60
63	L/4-2	0,20	0,15	1680	0,85	1,90	0,95	0,76	0,57	34,8	3,3	3,4	2,20	0,00028	4,20
03	L/4-Z	0,25	0,19	3420	0,53	1,90	0,95	0,76	0,66	38,0	3,6	4,3	2,90	0,00026	4,20
71	S/4-2	0,28	0,21	1690	1,19	1,32	0,66	0,55	0,73	54,7	2,4	2,5	3,50	0,00072	5,40
7 1	3/4-2	0,37	0,28	3335	0,80	1,60	0,80	0,67	0,86	51,1	2,8	3	3,60	0,00072	5,40
71	L/4-2	0,40	0,30	1660	1,73	1,96	0,98	0,82	0,75	51,2	2,3	2,3	3,20	0,00086	6,30
7 1	L/4-Z	0,60	0,45	3260	1,32	2,60	1,30	1,09	0,88	49,4	1,7	2,0	3,30	0,00000	0,30
80	S/4-2	0,65	0,48	1670	2,74	2,60	1,30	1,09	0,77	60,2	1,9	2,2	3,10	0,00109	8,00
00	3/4-2	0,82	0,60	3340	1,72	3,32	1,66	1,39	0,82	55,3	2,2	2,2	3,50	0,00109	6,00
00	L/4-2	0,95	0,70	1625	4,11	3,68	1,84	1,54	0,79	60,4	1,8	1,9	3,10	0.00140	0.00
80	L/4-Z	1,145	0,85	3325	2,44	4,68	2,34	1,95	0,8	57,0	2,2	2,3	3,50	0,00140	9,00
00	S/4-2	1,50	1,10	1680	6,25	5,36	2,68	2,24	0,84	61,3	1,7	2,3	3,90	0.00005	12,0
90	5/4-2	1,90	1,40	3335	4,01	7,00	3,50	2,92	0,88	57,1	1,8	2,3	3,90	0,00235	12,0
90	L/4-2	2,00	1,50	1655	8,65	7,00	3,50	2,92	0,81	66,4	2,2	2,4	3,70	0.00212	140
90	L/4-Z	2,50	1,90	3330	5,45	9,40	4,70	3,92	0,82	61,9	2,6	2,5	4,00	0,00313	14,0
100	L/4-2	2,70	2,00	1680	11,4	9,20	4,60	3,85	0,75	72,8	2,1	2,4	3,50	0.0045	100
100	L/4-Z	3,20	2,40	3395	6,75	11,0	5,50	4,60	0,85	64,4	2,4	2,6	4,40	0,0045	18,0
100	LA/4-2	3,50	2,60	1655	15,0	11,2	5,62	4,70	0,87	66,7	1,8	2,1	3,50	0.006	01.0
100	LAV4-2	4,20	3,10	3390	8,73	13,4	6,71	5,60	0,88	65,9	2,1	2,3	4,50	0,006	21,0
110	M/4 O	5,00	3,70	1750	20,2	13,8	6,90	6,60	0,82	82,1	2,0	2,7	5,20	0.011	20.0
112	M/4-2	5,90	4,40	3505	12,0	16,4	8,20	8,00	0,81	83,1	2,5	3,1	6,50	0,011	32,0
120	S/4-2	6,30	4,70	1760	25,5	18,6	9,30	7,80	0,84	75,5	2,1	2,8	4,70	0.024	44.0
132	5/4-2	7,90	5,90	3485	16,2	24,0	12,0	10,0	0,88	70,1	2,5	3,0	5,60	0,024	44,0
100	M/4 O	8,70	6,50	1740	35,7	26,0	13,0	10,9	0,83	75,6	2,4	2,9	5,10	0.020	EE O
132	M/4-2	10,7	8,00	3500	21,8	36,0	18,0	15,0	0,79	70,6	2,9	3,2	5,90	0,032	55,0
102		10,7	0,00	3300	21,0	30,0	10,0	13,0	0,79	70,0	۷,5	٥,٧	5,90		

^{*} Position de montage B5, sans options

Standard - commutation de polarité

750 / 3000 r/min 50 Hz 400 V D/YY 8 - 2 pôles

Commutation de polarité S3-40%

		P_{N}	n _N	M _N	I _N	cos	η	M _A /M _N	M _K /M _N	I _A /I _N	J	kg
T	ypes				400 V	φ						*
		[kW]	[r/min]	[Nm]	[A]		[%]				[kgm²]	[kg]
71	S/8-2 WU	0,045	650	0,66	0,44	0,58	25,5	2,60	2,60	1,30	0.00070	5,40
/ 1	5/6-2 WU	0,22	2520	0,83	0,60	0,90	58,8	1,80	1,90	2,50	0,00072	5,40
71	L/8-2 WU	0,06	655	0,87	0,51	0,61	27,8	2,30	2,30	1,60	0.00006	6,30
71	L/0-2 WU	0,30	2450	1,17	0,88	0,90	54,7	1,40	1,40	2,30	0,00086	0,30
80	S/8-2 WU	0,10	650	1,47	0,70	0,57	36,2	2,00	2,00	1,60	0.00109	9.00
80	5/8-2 WU	0,45	2695	1,59	1,40	0,76	61,0	2,00	2,00	2,70	0,00109	8,00
00	1 /O O W/II	0,13	585	2,12	0,74	0,70	36,2	1,40	1,50	1,60	0.00140	0.00
80	L/8-2 WU	0,55	2620	2,00	1,47	0,88	61,4	2,10	2,00	3,30	0,00140	9,00
00	0/0 0 14/11	0,20	665	2,87	1,07	0,57	47,3	2,10	2,20	2,00	0.00005	10.0
90	S/8-2 WU	0,80	2770	2,76	2,37	0,74	65,8	2,90	2,60	3,50	0,00235	12,0
00	1 /0 0 14/11	0,30	640	4,48	1,31	0,60	55,1	1,90	1,90	2,00	0.00010	140
90	L/8-2 WU	1,20	2770	4,14	3,05	0,79	71,9	2,10	2,30	3,50	0,00313	14,0
400	. 10. 0. 11.	0,40	685	5,58	1,70	0,58	58,6	1,10	2,20	2,40	0.0045	400
100	L/8-2 WU	1,60	2790	5,48	3,60	0,86	74,6	2,00	2,30	4,00	0,0045	18,0
		0,55	680	7,72	2,28	0,56	62,2	2,10	2,30	2,50		
100	LA/8-2 WU	2,20	2810	7,48	4,87	0,83	78,6	2,50	2,60	4,60	0,0060	21,0
	14/0 0 14/14	0,75	695	10,3	3,05	0,53	67,0	2,30	2,60	2,80	0.0440	
112	M/8-2 WU	3,00	2875	9,96	6,37	0,83	81,9	2,30	3,30	5,60	0,0110	32,0
400	0/0 0 14/11	1,00	630	15,2	4,00	0,53	68,1	1,80	2,00	2,60	0.0040	44.0
132	S/8-2 WU	4,00	2710	14,1	8,55	0,93	72,6	2,30	2,30	4,80	0,0240	44,0
400	14/0 0 14/11	1,40	700	19,1	5,10	0,60	66,0	1,90	2,30	2,80	0.0000	
132	M/8-2 WU	5,50	2835	18,5	10,6	0,93	80,5	2,30	2,50	5,30	0,0320	55,0

Standard CUS - commutation de polarité

900 / 3600 r/min 60 Hz 230/460/575 V Y/Y 8 - 2 pôles

Commutation de polarité CUS S3-40%

		3 70												
	F	P _N	n _N	M _N		I _N		cos	η	M _A /M _N	M _K /M _N	I _A /I _N	J	kg
Types					230 V	460 V	575 V	φ						*
	[HP]	[kW]	[r/min]	[Nm]	[A]	[A]	[A]		[%]				[kgm²]	[kg]
71 S/8-2 WU	0,06	0,045	820	0,52	0,86	0,43	0,36	0,52	25,3	2,30	2,20	1,70	0.00070	E 40
/ 1 5/6-2 WU	0,30	0,22	3250	0,65	0,98	0,49	0,40	0,87	64,8	1,40	1,30	2,50	0,00072	5,40
71 L/8-2 WU	0,08	0,06	820	0,70	1,00	0,50	0,44	0,54	27,9	2,40	2,40	1,90	0.00006	6,30
/ I L/O-Z WU	0,40	0,30	3260	0,88	1,36	0,68	0,55	0,89	62,3	2,00	2,10	3,00	0,00086	0,30
80 S/8-2 WU	0,13	0,10	825	1,16	1,36	0,68	0,59	0,50	37,0	1,70	1,50	1,80	0,00110	8,00
00 3/0-2 WU	0,60	0,45	3350	1,28	2,50	1,25	1,12	0,71	63,7	1,40	1,80	3,00	0,00110	0,00
80 L/8-2 WU	0,17	0,13	650	1,91	1,52	0,76	0,65	0,69	31,2	1,40	1,80	1,80	0,00150	9,00
00 L/0-2 WU	0,74	0,55	3110	1,69	2,66	1,33	1,32	0,88	59,1	2,00	1,80	4,00	0,00130	9,00
90 S/8-2 WU	0,27	0,20	830	2,30	2,04	1,02	0,88	0,50	49,3	2,20	2,20	2,30	0,00230	12,0
90 3/0-2 WU	1,07	0,80	3400	2,25	4,18	2,09	1,90	0,71	67,7	3,20	3,00	4,40	0,00230	12,0
90 L/8-2 WU	0,40	0,30	815	3,52	2,42	1,21	1,04	0,53	58,8	2,00	1,40	1,80	0,00310	14,0
90 L/6-2 WU	1,60	1,20	3410	3,36	5,30	2,65	2,41	0,76	74,9	3,30	2,50	4,20	0,00310	14,0
100 L/8-2 WU	0,54	0,40	845	4,52	3,18	1,59	1,40	0,51	62,0	1,80	2,10	2,40	0.0045	10.0
100 L/6-2 WU	2,15	1,60	3425	4,46	6,24	3,12	2,70	0,84	76,7	2,40	2,50	4,60	0,0045	18,0
100 LA/8-2 WU	0,75	0,55	845	6,22	4,24	2,12	1,83	0,49	66,5	1,50	1,90	2,40	0.0060	01.0
100 LAVO-2 WU	3,00	2,2	3445	6,10	8,34	4,17	3,64	0,81	81,8	2,10	2,20	4,40	0,0060	21,0
112 M/8-2 WU	1,00	0,75	850	8,43	5,70	2,85	2,48	0,47	70,4	2,90	2,40	3,30	0,0119	20.0
112 IVI/0-2 VVU	4,00	3,00	3495	8,20	10,9	5,43	4,73	0,82	84,7	2,50	3,30	5,70	0,0119	30,0
120 0/0 0 \\/	1,35	1,00	865	11,04	6,68	3,34	2,87	0,53	71,0	2,60	2,30	2,90	0.0222	44.0
132 S/8-2 WU	5,40	4,00	3470	11,01	13,7	6,84	5,61	0,91	80,8	2,90	2,40	5,20	0,0233	44,0
122 1/0 2 1/11	1,90	1,40	860	15,55	9,16	4,58	3,89	0,53	72,5	2,50	2,20	3,60	0.0217	55.0
132 IVI/0-2 VVU	7,40	5,50	3455	15,20	18,1	9,07	7,33	0,93	81,9	2,90	2,40	4,70	0,0317	55,0
132 S/8-2 WU 132 M/8-2 WU	5,40 1,90	4,00 1,40	3470 860	11,01 15,55	13,7 9,16	6,84 4,58	5,61 3,89	0,91 0,53	80,8 72,5	2,90 2,50	2,40 2,20	5,20 3,60	0,0233	

^{*} Position de montage B5, sans options

www.nord.com | 21 C

Standard - commutation de polarité

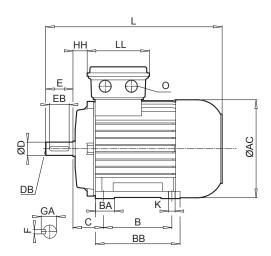
750 / 1500 r/min 50 Hz 400 V D/YY 8 - 4 pôles

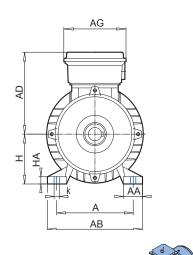
Commutation de polarité S1

		P_{N}	n _N	M_{N}	I _N	cos	η	M_A/M_N	M_{κ}/M_{N}	I _A /I _N	J	kg
Ty	/pes				400 V	φ						*
		[kW]	[r/min]	[Nm]	[A]		[%]				[kgm²]	[kg]
71	C/O 4	0,12	670	1,71	0,72	0,69	34,9	1,40	1,80	1,70	0.00001	F 40
71	S/8-4	0,18	1410	1,22	0,50	0,79	65,8	1,70	2,30	3,80	0,00091	5,40
71	1./0.4	0,18	620	2,77	0,90	0,78	37,0	1,60	1,70	2,00	0.0010	0.70
71	L/8-4	0,25	1410	1,69	0,64	0,82	68,8	1,80	2,00	3,90	0,0012	6,70
00	0/0.4	0,25	690	3,46	1,24	0,75	38,8	1,50	1,70	2,60	0.0000	0.00
80	S/8-4	0,37	1380	2,56	1,14	0,71	66,0	1,50	1,60	3,80	0,0022	8,90
00	1./0.4	0,37	680	5,20	1,71	0,76	41,1	1,70	1,90	2,30	0.0000	0.00
80	L/8-4	0,55	1380	3,81	1,43	0,76	73,0	1,80	2,00	3,80	0,0028	9,80
00	0/0.4	0,40	700	5,46	1,81	0,80	39,9	1,60	1,70	2,70	0.0007	10.0
90	S/8-4	0,75	1380	5,19	2,00	0,82	66,0	1,50	1,90	3,60	0,0037	12,0
00	1./0.4	0,55	700	7,50	2,47	0,70	45,9	1,80	2,00	3,10	0.0050	140
90	L/8-4	1,00	1400	6,82	2,47	0,78	74,9	1,60	1,80	3,90	0,0050	14,0
100	1./0.4	0,70	710	9,41	2,85	0,75	47,3	1,70	1,90	3,30	0.0045	40.0
100	L/8-4	1,40	1400	9,55	3,61	0,88	63,6	1,40	1,50	3,80	0,0045	18,0
100	1.4.0.4	1,00	690	13,8	3,88	0,61	61,0	1,40	2,10	2,50	0.000	04.0
100	LA/8-4	1,60	1400	10,9	3,62	0,89	71,7	1,40	2,20	4,20	0,006	21,0
440	NA/O 4	1,50	700	20,5	5,23	0,61	67,9	1,60	1,80	3,60	0.010	00.0
112	M/8-4	2,50	1410	16,9	5,23	0,85	81,2	1,50	1,70	4,00	0,018	32,0
100	0/0.4	2,20	725	29,0	7,70	0,54	76,4	2,20	2,80	4,50	0.001	40.7
132	S/8-4	3,40	1455	22,3	7,20	0,82	83,1	2,20	3,00	6,50	0,031	42,7
100	M/O 4	2,90	730	37,9	10,2	0,50	82,1	2,10	3,20	3,70	0.000	40.0
132	M/8-4	4,40	1460	28,8	9,40	0,83	81,4	2,20	3,30	6,00	0,038	48,9

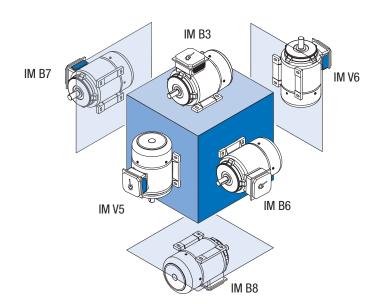
^{*} Position de montage B5, sans options

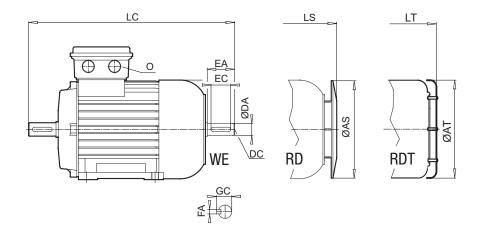
DESSINS COTÉS DU MOTEUR



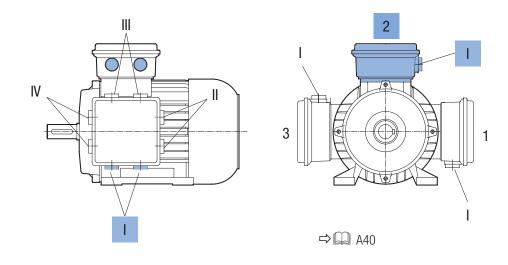


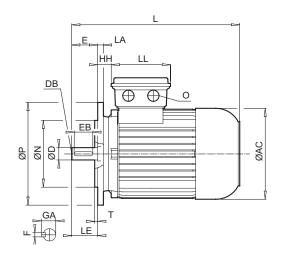
IEC B3	D	2 -	3
IEC B5			
IEC B14	D	6 -	7
IEC B3-BRE	D	8 -	9
IEC B5-BRE	D 1	0 -	11
IEC B14-BRE	D 1	2 -	13
Options			20
NEMA Footmount			
NEMA C-Face	D 2	1	

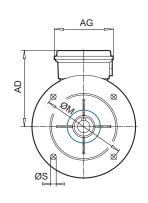




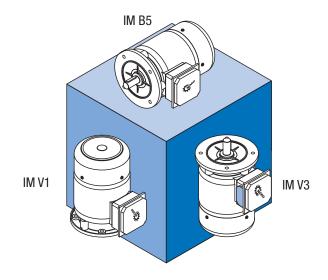
Types																			
	IE1*	IE2	IE3														19		
			[mm]	Α	AA	AB	В	BA	BB	НА	k	K	AC	AD	AG	С	Н	НН	L
63	S/L	-	SP/LP	100	21	120	80	27	105	9	12	7	123	115	100	40	63	12	215
71	S/L	-	RP/SP/LP	112	24	136	90	24	108	10	12	7	138	124	100	45	71	20	244
80	S/L	SH/LH	RP/SP/LP	125	30	160	100	30	125	11	17	10	156	142	114	50	80	22	276
90	S/L	SH/LH	RP/SP/LP	140	34	174	125	35	155	12	17	10	176	147	114	56	90	26	326
100 100	L/LA -	LH/AH -	- LP/AP**	160 160	37 40	192 200	140 140	30 35	175 175	15 18	22 22	12 12	194 194	170 170	114 111	63 63	100 100	32 32	366 366
112 112	M -	- MH	- MP	190	40	224	140	34	175	15	22	12	218	179	114	70	112	35	386 411
132	S/M/MA	SH/MH/LH	SP/MP	216	58	260	178	37	218	18	30	12	258	204	122	89	132	47	491
160 160	M L	MH -	SP/MP -	254	72	318	210 254	52	264 308	25	30	14,5	310	242	186	108	160	52	602
160	-	LH	LP	254	72	318	254	52	308	25	30	14,5	310	242	186	108	160	52	646
180 180	-	MH LH	MP LP	279	88,5	340	241 279	-	281 319	27	30	14,5	348	259	186	121	180	54	726
225 225	-	SH MH	SP MP	356	79	443	286 311	66	359	20	25	20	443	347	245	149	225	94	882

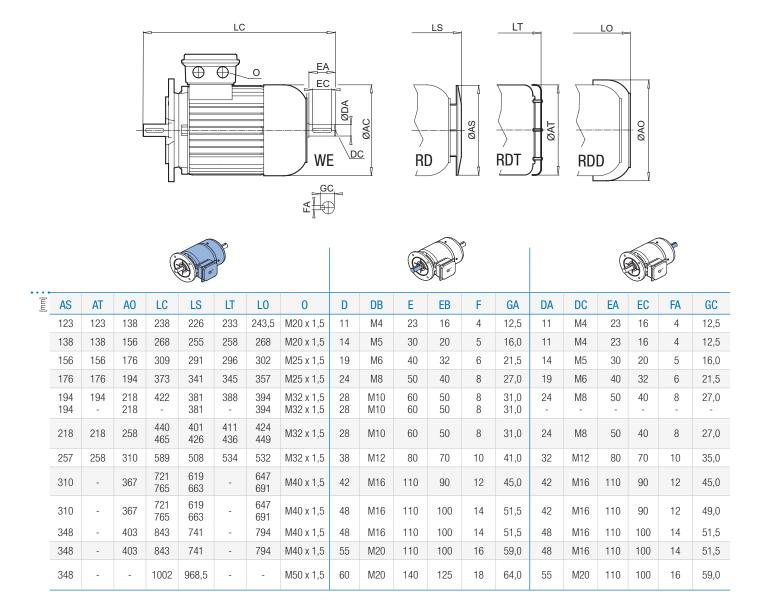

^{* +} Standard ** Série APAB



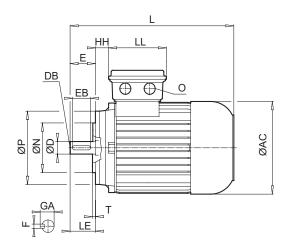


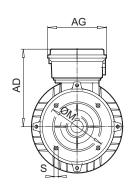
[mm]	LC	LL	AS	AT	LS	LT	0	D	DB	Е	EB	F	GA	DA	DC	EA	EC	FA	GC
_	238	100	123	123	226	233	M20 x 1,5	11	M4	23	16	4	12,5	11	M4	23	16	4	12,5
	268	100	138	138	255	258	M20 x 1,5	14	M5	30	20	5	16,0	11	M4	23	16	4	12,5
	309	114	156	156	291	229	M25 x 1,5	19	M6	40	32	6	21,5	14	M5	30	20	5	16,0
	373	114	176	176	341	345	M25 x 1,5	24	M8	50	40	8	27,0	19	M6	40	32	6	21,5
	422 -	114 112	194 194	194	381 381	388	M32 x 1,5 M32 x 1,5	28 28	M10 M10	60 60	50 50	8 8	31,0 31,0	24 -	M8 -	50 -	40 -	8 -	27,0
	440 465	114	218	218	401 426	411 436	M32 x 1,5	28	M10	60	50	8	31,0	24	M8	50	40	8	27,0
	589	122	257	258	508	534	M32 x 1,5	38	M12	80	70	10	41,0	32	M12	80	70	10	35,0
	721	186	310	-	619	-	M40 x 1,5	42	M16	110	90	12	45,0	42	M16	110	90	12	45,0
	765	186	310	-	663	-	M40 x 1,5	42	M16	110	90	12	45,0	42	M16	110	90	12	45,0
	843	186	348	-	741	-	M40 x 1,5	48	M16	110	100	14	51,5	48	M16	110	100	14	51,5
	1002	245	348	-	968,5	-	M50 x 1,5	60	M20	140	125	18	64	55	M20	110	100	16	59

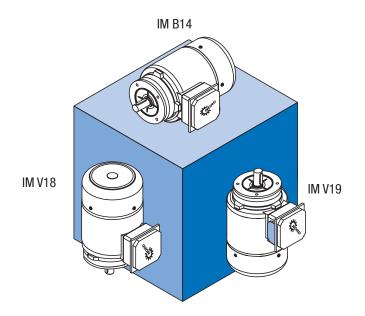


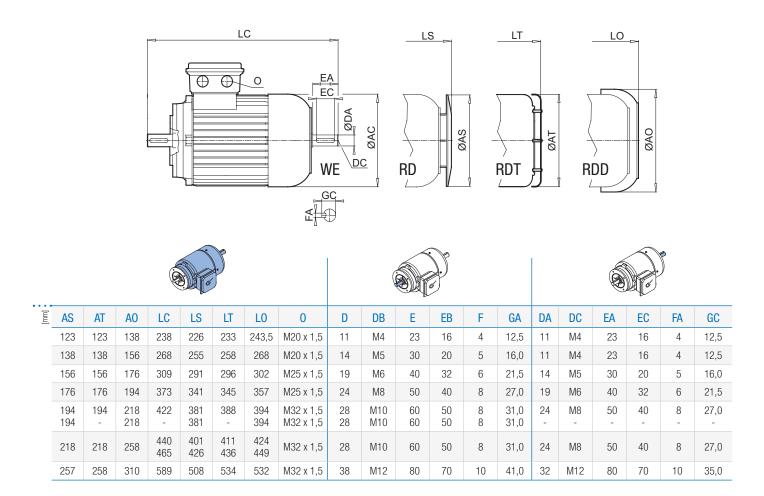

Types																
	IE1*	IE2	IE3				6									
			[mm]	LA	M	N	Р	S	Т	AC	AD	AG	НН	L	LE	LL
63	S/L	-	SP/LP	10	115	95	140	9	3,0	123	115	100	12	215	23	100
71	S/L	-	RP/SP/LP	10	130	110	160	9	3,5	138	124	100	20	244	30	100
80	S/L	SH/LH	RP/SP/LP	11	165	130	200	11	3,5	156	142	114	22	276	40	114
90	S/L	SH/LH	RP/SP/LP	11	165	130	200	11	3,5	176	147	114	26	326	50	114
100 100	L/LA -	LH/AH -	- LP/AP**	15 15	215 215	180 180	250 250	13,5 13,5	4,0 4,0	194 194	170 170	114 111	32 32	366 366	60 60	114 112
112 112	M -	- MH	- MP	15	215	180	250	13	4,0	218	179	114	35	386 411	60	114
132	S/M/MA	SH/MH/LH	SP/MP	20	265	230	300	13	4,0	258	204	122	47	491	80	122
160 160	M/L -	MH LH	SP/MP LP	20	300	250	350	17,5	5,0	310	242	186	52	602 646	110	186
180 180	MX LX	-		20	300	250	350	17,5	5,0	310	242	186	52	602 646	110	186
180	-	MH/LH	MP/LP	14	300	250	350	17,5	5,0	348	259	186	54	726	110	186
200	LX	XH	-	14	350	300	400	17,5	5,0	348	259	186	54	726	110	186
225 225	-	SH MH	SP MP	20	400	350	450	17,5	5,0	443	347	245	94	882	140	245

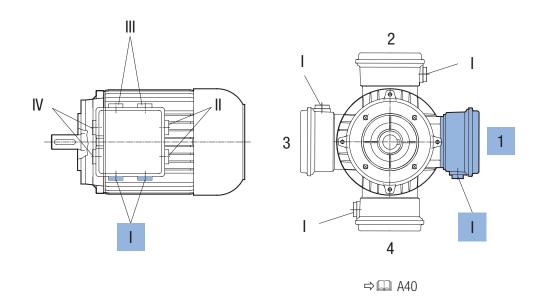
^{* +} Standard


^{**} Série APAB

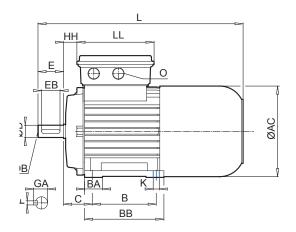


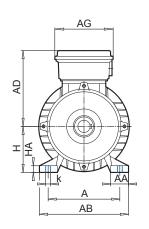



Types											É				
	IE1*	IE2	IE3								4		,		
			[mm]	M	N	Р	S	Т	AC	AD	AG	НН	L	LE	LL
63	S/L	-	SP/LP	75	60	90	M5 x 8	2,5	123	115	100	12	215	23	100
71	S/L	-	RP/SP/LP	85	70	105	M6 x 12	2,5	138	124	100	20	244	30	100
80	S/L	SH/LH	RP/SP/LP	100	80	120	M6 x 12	3,0	156	142	114	22	276	40	114
90	S/L	SH/LH	RP/SP/LP	115	95	140	M8 x 15	3,0	176	147	114	26	326	50	114
100 100	L/LA -	LH/AH -	- LP/AP**	130 130	110 110	160 160	M8 x 16 M8 x 16	3,5 4,0	194 194	170 170	114 111	32 32	366 366	60 60	114 112
112 112	M -	- MH	- MP	130	110	160	M8 x 12	3,5	218	179	114	35	386 411	60	114
132	S/M/MA	SH/MH/LH	SP/MP	165	130	200	M10 x 18	3,5	258	204	122	47	491	80	122

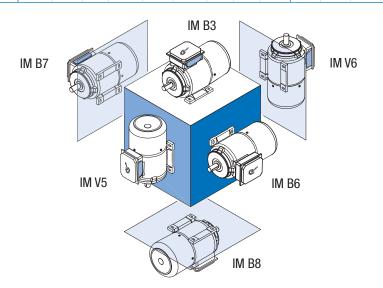

^{* +} Standard

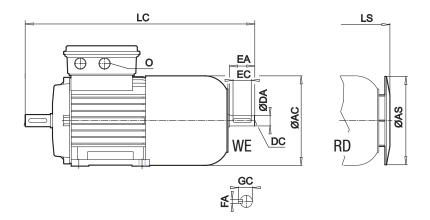
^{**} Série APAB



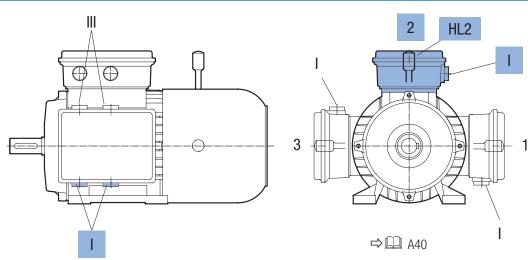


B3-BRE

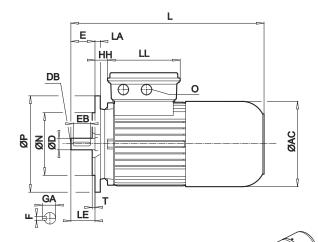


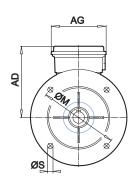

Types										<u>)</u> .)										
	IE1*	IE2	IE3	BRE [Nm]																
				[mm]	Α	AA	AB	В	BA	BB	НА	k	K	AC	AD	AG	С	Н	НН	L
63	S/L	-	SP/LP	5	100	21	120	80	27	105	9	12	7	123	123	89	40	63	19	271
71	S/L	-	SP/LP	5	112	24	136	90	24	108	10	12	7	138	132	89	45	71	27	302
80 80	S L	SH LH	- LP	5 10	125	30	160	100	30	125	11	17	10	156	142	108	50	80	26	340
90	S/L	SH/LH	SP/LP	20	140	34	174	125	35	155	12	17	10	176	147	108	56	90	30	401
100 100 100	L LA	LH AH -	LP AP LP/AP **	20 40	160 160	37 40	192 200	140 140	30 35	175 175	15 18	22	12 12	194 194	172 170	108 111	63 63	100	36 32	457 448
112 112	M -	- MH	- MP	60 60	190	40	224	140	34	175	15	22	12	218	182	108	70	112	39	480 505
132 132 132	S M MA	SH MH LH	SP MP -	60 100 150	216	58	260	178 178 178	37	218 218 218	18	30	12	258	201	139	89	132	40	598 598 598
160 160	M L	MH -	SP/MP -	100 150	254	72	318	210 254	52	264 308	25	30	14,5	310	242	186	108	160	52	737
160	-	LH	LP	250	254	72	318	254	52	308	25	30	14,5	310	242	186	108	160	52	781
180 180	-	MH LH	MP LP	250 250	279	88,5	340	241 279	-	281 319	27	30	14,5	348	259	186	121	180	54	851
225 225	-	SH MH	SP MP	250 400	356	79	443	286 311	66	359	20	25	20	443	347	245	149	225	94	1062

^{* +} Standard

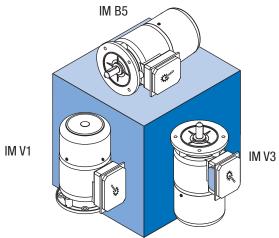


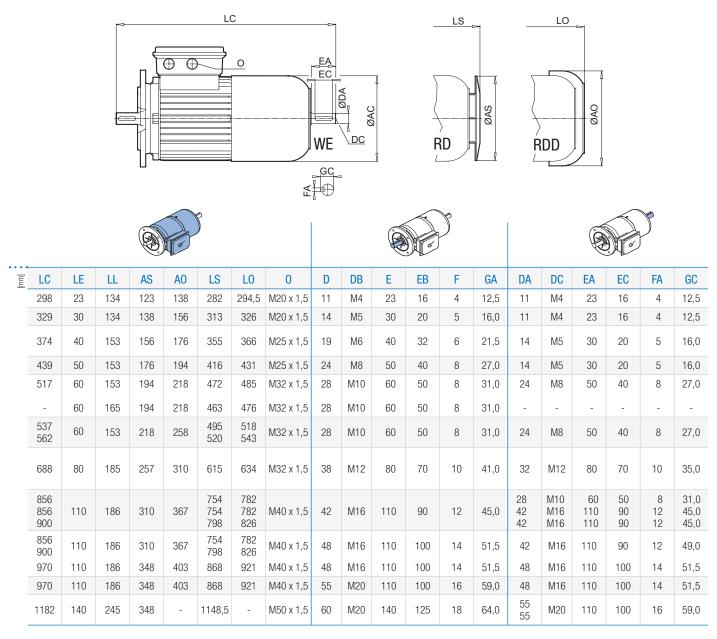
^{**} Série APAB

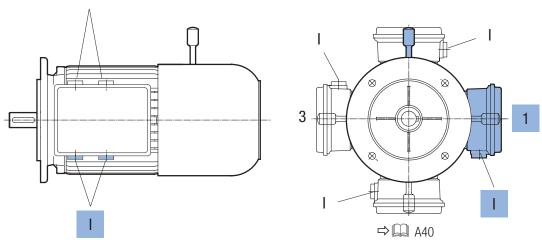



E E	LC	LL	AS	LS	0	D	DB	Е	EB	F	GA	DA	DC	EA	EC	FA	GC
	298	134	123	282	M20 x 1,5	11	M4	23	16	4	12,5	11	M4	23	16	4	12,5
	329	134	138	313	M20 x 1,5	14	M5	30	20	5	16,0	11	M4	23	16	4	12,5
	374	153	156	355	M25 x 1,5	19	M6	40	32	6	21,5	14	M5	30	20	5	16,0
	439	153	176	416	M25 x 1,5	24	M8	50	40	8	27,0	14	M5	30	20	5	16,0
	517	153	194	472	M32 x 1,5	28	M10	60	50	8	31,0	24	M8	50	40	8	27,0
	-	165	194	463	M32 x 1,5	28	M10	60	50	8	31,0	-	-	-	-	-	-
	537 562	153	218	495 520	M32 x 1,5	28	M10	60	50	8	31,0	24	M8	50	40	8	27,0
	688 688 688	185	257	615 615 615	M32 x 1,5	38	M12	80	70	10	41,0	32	M12	80	70	10	35,0
	856	186	310	754	M40 x 1,5	42	M16	110	90	12	45,0	28 42	M10 M16	60 110	50 90	8 12	31,0 45,0
	900	186	310	798	M40 x 1,5	42	M16	110	90	12	45,0	42	M16	110	90	12	45,0
	970	186	348	868	M40 x 1,5	48	M16	110	100	14	51,5	48	M16	110	100	14	51,5
	1182	245	348	1148,5	M50 x 1,5	60	M20	140	125	18	64	48 55	M20	110	100	16	59,0

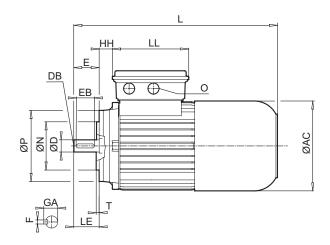
B5-BRE

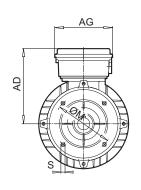



Types															
	IE1*	IE2	IE3	BRE [Nm]											
				[mm]	LA	M	N	Р	S	Т	AC	AD	AG	НН	L
63	S/L	-	SP/LP	5	10	115	95	140	9	3,0	123	123	89	19	271
71	S/L	-	SP/LP	5	10	130	110	160	9	3,5	138	132	89	27	302
80 80	S L	SH LH	- LP	5 10	11	165	130	200	11	3,5	156	142	108	26	340
90	S/L	SH/LH	SP/LP	20	11	165	130	200	11	3,5	176	147	108	30	401
100 100	L LA	LH AH	-	20 40	15	215	180	250	13,5	4,0	194	173	108	36	457
100	- -	- -	LP/AP **	20	15	215	180	250	13,5	4,0	194	168	111	32	448
112 112	M -	- MH	- MP	60 60	15	215	180	250	13	4,0	218	182	108	39	480 505
132 132 132	S M MA	SH MH LH	SP MP -	60 100 150	20	265	230	300	13	4,0	258	201	139	40	598
160 160 160	M L -	MH - LH	SP/MP - LP	100 150 250	20	300	250	350	17,5	5,0	310	242	186	52	737 737 781
180 180	MX LX	-	-	250 250	20	300	250	350	17,5	5,0	310	242	186	52	737 781
180	-	MH/LH	MP/LP	250	14	300	250	350	17,5	5,0	348	259	186	54	851
200	LX	XH	-	400	14	350	300	400	17,5	5,0	348	259	186	54	851
225 225	-	SH MH	SP MP	400 800	20	400	350	450	17,5	5,0	443	347	245	94	1062

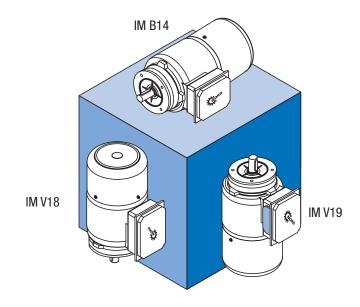

^{* +} Standard

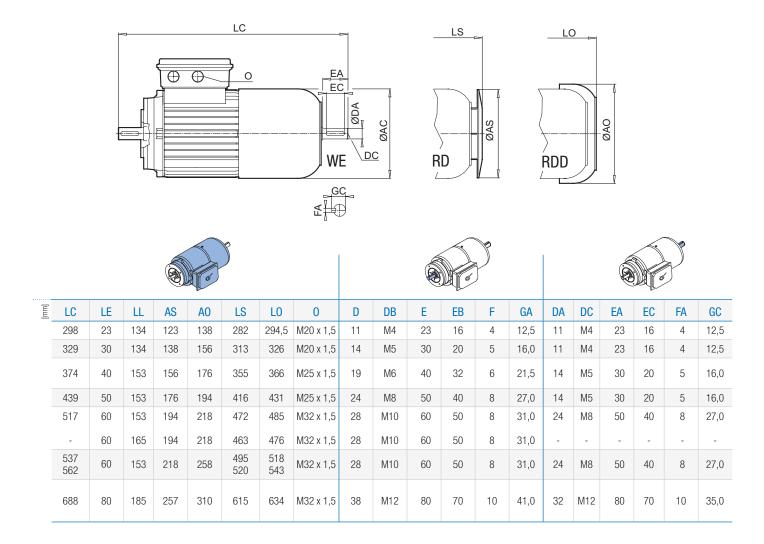
^{**} Série APAB

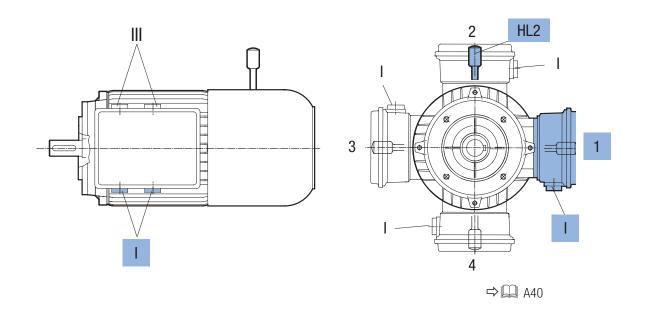




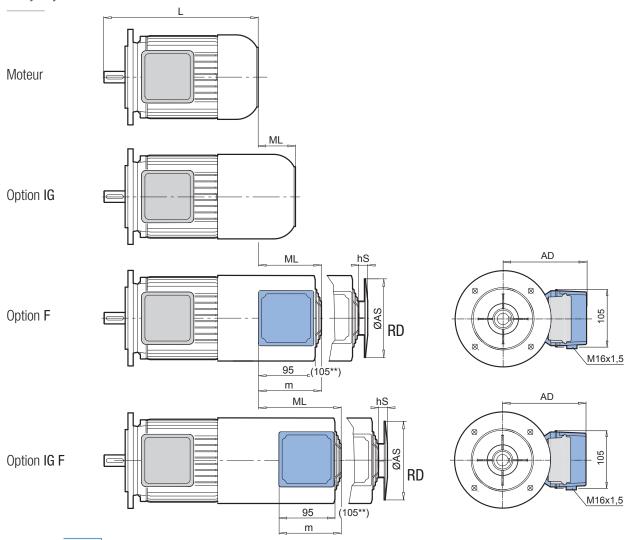
B14-BRE



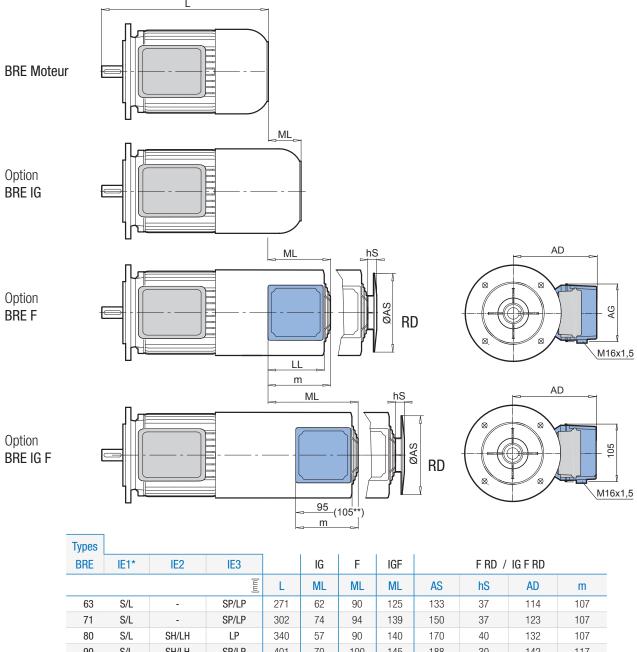

Types						(
	IE1*	IE2	IE3	BRE [Nm]		`					W.				
				[mm]	M	N	Р	S	Т	AC	AD	AG	НН	L	
63	S/L	-	SP/LP	5	75	60	90	M5 x 8	2,5	123	123	89	19	271	
71	S/L	-	SP/LP	5	85	70	105	M6 x 13	2,5	138	132	89	27	302	
80 80	S L	SH LH	- LP	5 10	100	80	120	M6 x 12	3,0	156	142	108	26	340	
90	S/L	SH/LH	SP/LP	20	115	95	140	M8 x 15	3,0	176	147	108	30	401	
100 100 100	L LA -	LH AH -	- - LP/AP **	20 40	130 130	110 110	160 160	M8 x 16	3,5 4,0	194 194	172 170	108 111	36 32	457 448	
				00	130	110	100	IVIO X TO	4,0	194	170	111	JZ		
112 112	M -	MH	MP	60 60	130	110	160	M8 x 12	3,5	218	182	108	39	480 505	
132 132 132	S M MA	SH MH LH	SP MP -	60 100 150	165	130	200	M10 x 18	3,5	258	201	139	40	598	


^{* +} Standard

^{**} Série APAB

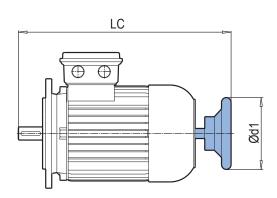


IG, F, IGF



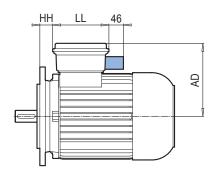
Types											
	IE1*	IE2	IE3		IG	F	IGF		FRD /	IG F RD	
			[mm]	L	ML	ML	ML	AS	hS	AD	m
63	S/L	-	SP/LP	215	55	88	158	133	37	114	107
71	S/L	-	SP/LP	244	56	89	144	150	37	123	107
80	S/L	SH/LH	LP	276	61	90	140	170	40	132	107
90	S/L	SH/LH	SP/LP	326	72	104	149	188	30	142	117
100 100	L/LA -	LH/AH -	- LP/AP **	366 366	69 83	95 100	155 155	210	28	151	117
112 112	M -	- MH	- MP	386 411	68	99	149	249	33	163	117
132	S/M/MA	SH/MH/LH	SP/MP	491	63	115	155	300	25	183	127
160 160	M/L -	MH LH	SP/MP LP	602 646	70	150 145	235	338	32	210	127
180 180	MX LX	- -	-	602 646	70	150 145	235	338	32	210	127
180	-	MH/LH	MP/LP	726	109	153	233	338	32	210	127
200	LX	XH	-	726	109	153	233	338	32	210	127
225 225 225	- - -	- SH MH	RP SP MP	882	67	127	287	424	50	250	144
250	-	WH	WP	882	67	127	287	424	50	250	144

^{* +} Standard ** Série APAB


Types													
BRE	IE1*	IE2	IE3		IG	F	IGF	FRD / IG FRD					
			[mm]	L	ML	ML	ML	AS	hS	AD	m		
63	S/L	-	SP/LP	271	62	90	125	133	37	114	107		
71	S/L	-	SP/LP	302	74	94	139	150	37	123	107		
80	S/L	SH/LH	LP	340	57	90	140	170	40	132	107		
90	S/L	SH/LH	SP/LP	401	70	100	145	188	30	142	117		
100 100	L/LA -	LH/AH -	LP/AP LP/AP **	457 448	70 79	105 100	140 155	210	28	151	117		
112 112	M -	- MH	- MP	480 505	64	105	140	249	33	163	117		
132	S/M/MA	SH/MH/LH	SP/MP	598	65	125	155	300	25	183	127		
160 160	M/L -	MH LH	SP/MP LP	737 781	70	145	235	338	32	210	127		
180 180	MX LX	-	-	737 781	70	145	235	338	32	210	127		
180	-	MH/LH	MP/LP	851	70	146	251	338	32	210	127		
200	LX	XH	-	851	70	146	251	338	32	210	127		
225 225 225	- - -	- SH MH	RP SP MP	1062	65	189	279	424	50	250	144		
250	-	WH	WP	1062	65	189	279	424	50	250	144		

^{* +} Standard ** Série APAB

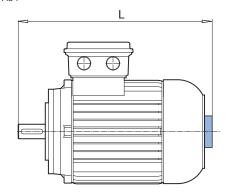
HR, MS

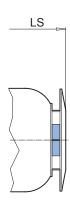

 HR

Types						
	IE1*	IE2	IE3			
			[mm]	d1	LC	LC + BRE
63	S/L	-	SP/LP	100	254	314
71	S/L	-	SP/LP	100	284	345
80	S/L	SH/LH	LP	100	325	390
90	S/L	SH/LH	SP/LP	160	393	459
100	L/LA	LH/AH	LP/AP	160	442	537
112 112	M -	- MH	- MP	160	460 485	557 582
132	S/M/MA	SH/MH/LH	SP/MP	200	610	709
160 160	M/L -	MH LH	SP/MP LP	315	744 788	879 923
180	MX LX	-	-	315	744 788	879 923
180	-	MH/LH	MP/LP	315	866	993
200	LX	XH	-	315	866	993

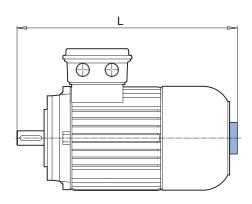
^{* +} Standard

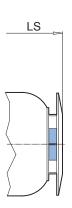
MS ⇒ 🕮 A39



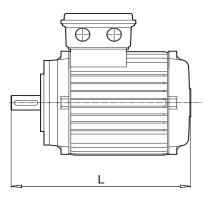

Types						
	IE1*	IE2	IE3			
			[mm]	AD	НН	LL
63	S/L	-	SP/LP	140	5	114
71	S/L	-	SP/LP	149	13	114
80	S/L	SH/LH	LP	158	22	114
90	S/L	SH/LH	SP/LP	163	26	114
100	L/LA	LH/AH	LP/AP	174	32	114
112	М	MH	MP	184	45	114
132	S/M/MA	SH/MH/LH	SP/MP	204	47	122

^{* +} Standard



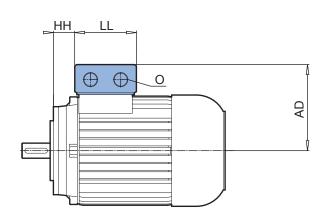

MG ⇒ □ A34

BRE MG


Types]						
	IE1*	IE2	IE3				
			W.	L	L + BRE	LS	LS + BRE
63	S/L	-	SP/LP	226	286	237	297
71	S/L	-	SP/LP	256	319	267	330
80	S/L	SH/LH	LP	286	352	295	361
90	S/L	SH/LH	SP/LP	340	414	349	423
100	L/LA	LH/AH	LP/AP	379	470	387	479
112 112	M -	- MH	- MP	398 423	493 518	407 432	502 526
132	S/M/MA	SH/MH/LH	SP/MP	501	607	512	618
160	M/L	MH/LH	SP/MP/LP		our de	emande	
180	-	MH/LH	MP/LP		Sur u	emanue	

^{* +} Standard

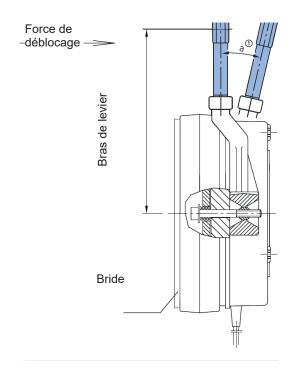
OL/H, EKK



OL/H

Types		
	IE1 + Standard	
	[mm]	L
63	S/L	183
71	S/L	207
80	S/L	236
90	S/L	283
100	L/LA	322
112	M	336
132	S/M/MA	431
160	M/L	527
180 180	MX LX	527 571
200	LX	619

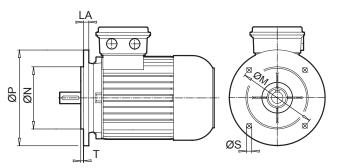
EKK

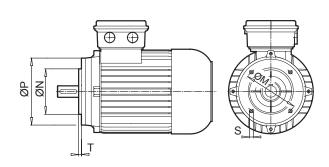


Types							
	IE1*	IE2	IE3				
			[mm]	AD	LL	0	НН
63	S/L	-	SP/LP	100	75	M16 x 1,5	25
71	S/L	-	SP/LP	109	75	M16 x 1,5	33
80	S/L	SH/LH	LP	124	92	M20 x 1,5	33
90	S/L	SH/LH	SP/LP	129	92	M20 x 1,5	37
100	L/LA	LH/AH	LP/AP	140	92	M20 x 1,5	43
112	М	MH	MP	150	92	M20 x 1,5	56
132	S/M/MA	SH/MH/LH	SP/MP	174	104	M25 x 1,5	56

^{* +} Standard

HL ⇒ □ B14

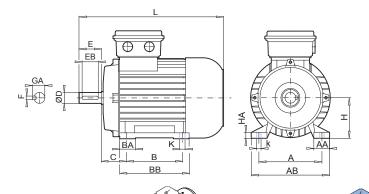

Déblocage manuel (HL) - Dimensions et forces


Taille de frein	Série du frein	Bras de levier [mm]	Force de déblocage [N]	Ouverture de clé [mm]	Filetage	Longueur du filetage [mm]	Angle de levage a
BRE 5	FDB/FDW 08	100	40	0	ME	7	
BRE 10	FDB/FDW 10	110	70	8	M5	7	
BRE 20	FDB/FDW 13	135	85	10	M6	0	
BRE 40	FDB/FDW 15	140	140	10	IVIO	9	
BRE 60	FDB/FDW 17	165	160				env. 10°
BRE 100	FDB/FDW 20	220	250	12	M8	12	env. 10
BRE 150	FDB/FDW 23	250	320				
BRE 250	RSM 250	330	390				
BRE 400	RSM 500	357	360	-	M20	19	
BRE 800	RSM 500	357	360				

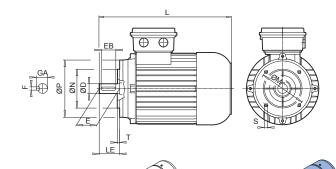
B5, B14

B5

B14


Types							
	B5, B14						
	[mm]	LA	M	N	Р	S	Т
63	B14 * B14 B14	- - -	75 85 100	60 70 80	90 105 120	M5 x 8 M6 x 16 M6 x 12	2,5 2,5 3,0
	B5	10	115	95	140	9	3,0
71	B14 * B14 B14	- - -	85 100 115	70 80 95	105 120 140	M6 x 13 M6 x 15 M8 x 16	2,5 3,0 3,0
	B5	10	130	110	160	9	3,5
80	B14 * B14 B14	- - -	100 115 130	80 95 110	120 140 160	M6 x 12 M8 x 16 M8 x 16	3,0 3,0 3,5
	B5	11	165	130	200	11	3,5
90	B14 B14 * B14	- - -	100 115 130	80 95 110	120 140 160	M6 x 14 M8 x 15 M8 x 16	3,0 3,0 3,0
	B5	11	165	130	200	11	3,5
100	B14 B14 B14 * B14	- - - -	100 115 130 165	80 95 110 130	120 140 160 200	M6 x 14 M8 x 14 M8 x 16 M10 x 16	3,0 3,0 3,5 3,5
	B5	15	215	180	250	13	4,0
112	B14 B14 * B14	- - -	115 130 165	95 110 130	140 160 200	M8 x 16 M8 x 12 M10 x 17	3,0 3,5 4,0
	B5	15	215	180	250	13	4,0
132	B14 B14 *	-	130 165	110 130	160 200	M8 x 12 M10 x 18	3,5 4,0
	B5	20	265	230	300	14	4,0
160	B5	20	300	250	350	17,5	5,0
180 .X	B5	20	300	250	350	17,5	5,0
180	B5	14	300	250	350	17,5	5,0
200	B5	14	350	300	400	17,5	5,0
225	B5	20	400	350	450	17,5	5,0

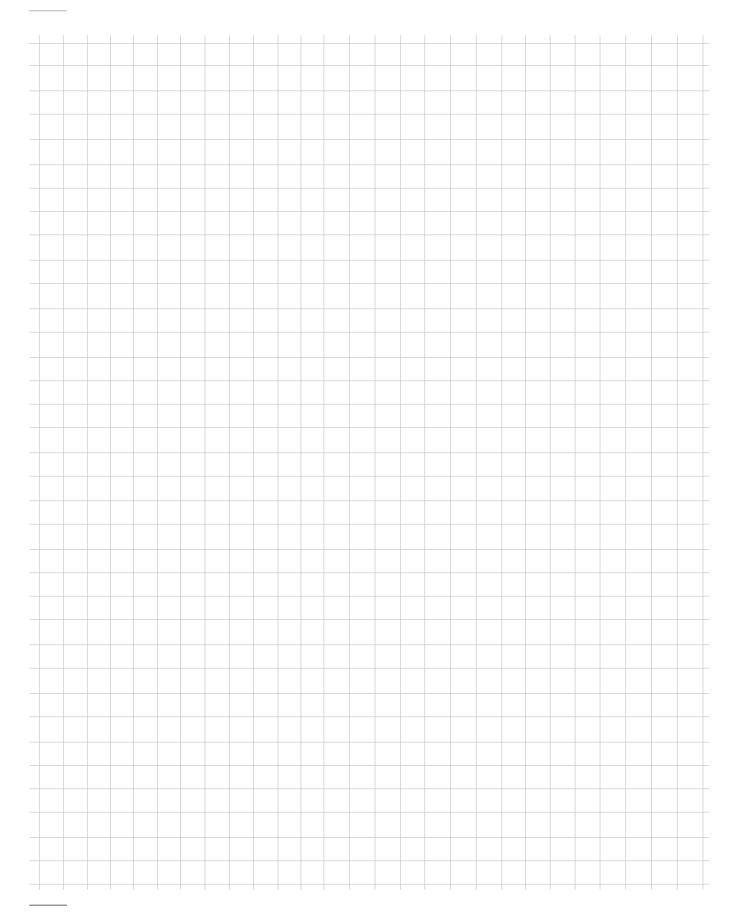
^{*} B14 Standard



Footmount

Types												6								
В3		NEMA																		
		[mm]	Α	AA	AB	В	BA	BB	НА	k	K	С	Н	L	D 0-0,013	Е	EB	F	GA	
71	SP/LP	56	123,95	36,5	148	76,2	19,5	94	12	13,7	8,7	69,9	88,9	280	15,875	47,6	42,9	4,78	17,9	
80	SP/LP	56 143T	123,95 139,70	32,0 39,5	154 170	76,2 101,6	26,5 38	102 127	14 14,5	17,5	8,7	69,9 37,2	88,9	292 294	15,875 22,225	47,6 57,2	42,9 46,1	4,78	17,9 24,4	
90	SP/LP	145T	139,70	43,0	175	127,0	35	157	15	17,5	8,7	57,2	88,9	334	22,225	57,2	46,1	4,78	24,4	
100 100	LP AP	182T 184T	190,50	52,5	223	114,3 139,7	68	173	15	15	10,3	69,9	114,3	377	28,575	69,9	57,2	6,35	31,4	
112	MP	184T	190,50	45,5	229	139,7	33	170	17	20,7	10,3	69,9	114,3	417	28,575	69,9	57,2	6,35	31,4	
132 132	SP MP	215T	215,90	58,5	260	177,8	37	218	17,5	20,7	10,3	88,9	133,4	497	34,925	85,7	77,8	7,92	38,4	

C - Face



Types														
B14		NEMA												
		[mm]	M	N -0,076	Р	S	Т	L	LE	D -0,013	Е	EB	F	GA
63	SP/LP	56 C	149,3	114,3	165	3/8 - 16	4,1	244	52,3	15,875	47,6	42,9	4,78	17,9
71	SP/LP	56 C	149,3	114,3	165	3/8 - 16	4,1	267	52,3	15,875	47,6	42,9	4,78	17,9
80	SP/LP	56 C 143 TC	149,3	114,3	165	3/8 - 16	4,1	292 294	52,3 53,8	15,875 22,225	47,6 57,2	42,9 46,1	4,78	17,9 24,4
90	SP/LP	145 TC	149,3	114,3	165	3/8 - 16	4,1	334	53,8	22,225	57,2	46,1	4,78	24,4
100 100 100	LP AP LP/AP **	182 TC 184 TC	184,2 184,2	215,9 215,9	229 229	1/2 - 13 1/2 - 13	6,4 6,4	377 371	66,5 54,4	28,575 28,575	69,9 69,8	57,2 57,2	6,35 6,35	31,4 31,4
112	MP	184 TC	184,2	215,9	229	1/2 - 13	6,4	417	66,5	28,575	69,9	57,2	6,35	31,4
132 132	SP MP	213 TC 215 TC	184,2	215,9	229	1/2 - 13	6,4	497	79,2	34,925	85,7	77,8	7,92	38,4
160 160	SP/MP LP	254 TC 256 TC	184,2	215,9	254	1/2 - 13	6,4	587 631	95,3	41,275	101,6	79,4	9,53	45,5

^{**} Série APAB

Notes

Extraits du programme NORD

G1000 Vitesses constantes Carters MONOBLOC 50 / 60 Hz

- Motoréducteurs à engrenages cylindriques NORDBLOC.1[®]
- Motoréducteurs à engrenages cylindriques
- Motoréducteurs à arbres parallèles
- Motoréducteurs à couples coniques
- Motoréducteurs à roue et vis

G4014 Motoréducteurs avec variateur électronique intégré

- Motoréducteurs à engrenages cylindriques NORDBLOC.1®
- Motoréducteurs à engrenages cylindriques
- Motoréducteurs à arbres parallèles
- Motoréducteurs à couples coniques
- Motoréducteurs à roue et vis

G1050 Réducteurs industriels MAXXDRIVE [®] Carters MONOBLOC 50 / 60 Hz

- Réducteurs à arbres parallèles
- ▶ Réducteurs à couples coniques

G1035 Réducteurs à vis sans fin UNIVERSAL

▶ SI et SMI

F3018_E3000 Variateurs de fréquence SK180E

F3020_E3000 Variateurs de fréquence SK200E

F3060_E3000 NORDAC PRO

Variateurs de fréquence SK 500P

FR NORD Réducteurs - Bureaux commerciaux 20, allée des Erables B.P. 59070 95947 ROISSY CH DE GAULLE Cedex

Tél.: + 33 (0)1 49 63 01 89 Fax: + 33 (01) 49 63 08 11 france@nord.com